August  2019, 39(8): 4783-4796. doi: 10.3934/dcds.2019195

On an exact solution of a nonlinear three-dimensional model in ocean flows with equatorial undercurrent and linear variation in density

School of Engineering, Trinity College Dublin, Dublin 2, Ireland

* Corresponding author: Biswajit Basu

The paper is for the special theme: Mathematical Aspects of Physical Oceanography, organized by Adrian Constantin

Received  October 2018 Revised  January 2019 Published  May 2019

The aim of the paper is to develop an exact solution relating to a system of model equations representing ocean flows with Equatorial Undercurrent and thermocline in the presence of linear variation of density with depth. The system of equations is generated from the Euler equations represented in a suitable rotating frame by following a careful asymptotic approach.The study in this paper is motivated by the recently developed Constantin-Johnson model [13] for Pacific flows with undercurrent and the exact results provided therein. The model formulated is two-layered, three-dimensional and nonlinear with a symmetric structure about the equator. The equations contain Coriolis effect and is consistent with $ \beta $ - plane approximation. Exact results of the asymptotic system of equations have been derived in a region close to the equator.

Citation: Biswajit Basu. On an exact solution of a nonlinear three-dimensional model in ocean flows with equatorial undercurrent and linear variation in density. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4783-4796. doi: 10.3934/dcds.2019195
References:
[1]

B. Basu, Some numerical investigations into a nonlinear three-dimensional model of Pacific equatorial ocean dynamics, Deep-Sea Res. II, 160 (2019), 7-15. Google Scholar

[2]

B. Basu, One a three-dimensional nonlinear model of Pacific equatorial ocean dynamics: Velocities and flow paths, Oceanography, 31(3) (2018), 51-58. Google Scholar

[3]

M. A. Cane, The response of an equatorial ocean to simple wind stress patterns: Ⅰ. Model formulation and analytical results, J. Mar. Res., 37 (1979), 232-252. Google Scholar

[4]

M. A. Cane, The response of an equatorial ocean to simple wind stress patterns: Ⅱ. Numerical results, J. Mar. Res., 6 (1979), 335-398. Google Scholar

[5]

J. R. Charney, Non-linear theory of a wind-driven homogeneous layer near the equator, Deep Sea Res., 6 (1959/60), 303-310. doi: 10.1016/0146-6313(59)90089-9. Google Scholar

[6]

A. Constantin, An exact solution for equatorially trapped waves, J. Geophys. Res.: Oceans, 117 (2012), C05029. doi: 10.1029/2012JC007879. Google Scholar

[7]

A. Constantin, On the modelling of equatorial waves, Geophys. Res. Lett., 39 (2012), L05602. doi: 10.1029/2012GL051169. Google Scholar

[8]

A. Constantin and P. Germain, Instability of some equatorially trapped waves, J. Geophys. Res.: Oceans, 118 (2013), 2802-2810. doi: 10.1002/jgrc.20219. Google Scholar

[9]

A. Constantin, Some nonlinear, equatorially trapped, nonhydrostatic internal geophysical waves, J. Phys. Oceanogr., 44 (2014), 781-789. doi: 10.1175/JPO-D-13-0174.1. Google Scholar

[10]

A. Constantin and R. S. Johnson, The dynamics of waves interacting with the Equatorial Undercurrent, Geophys. Astrophys. Fluid Dyn., 109 (2015), 311-358. doi: 10.1080/03091929.2015.1066785. Google Scholar

[11]

A. Constantin and R. S. Johnson, An exact, steady, purely azimuthal equatorial flow with a free surface, J. Phys. Oceanogr., 46 (2016), 1935-1945. doi: 10.1175/JPO-D-15-0205.1. Google Scholar

[12]

A. ConstantinR. I. Ivanov and C. I. Martin, Hamiltonian formulation for wave-current interactions in stratified rotational flows, Arch. Ration. Mech. Anal., 221 (2016), 1417-1447. doi: 10.1007/s00205-016-0990-2. Google Scholar

[13]

A. Constantin and R. S. Johnson, A nonlinear three-dimensional model for ocean flows, motivated by some observations of the Pacific Equatorial Undercurrent and thermocline, Phy. of Fluids, 29 (2017), 056604. Google Scholar

[14]

T. Cromwell, Circulation in a meridional plane in the central equatorial Pacific, J. Mar. Res., 12 (1953), 196-213. Google Scholar

[15]

H. A. Dijkstra, Nonlinear Physical Oceanography: A Dynamical Systems Approach to the Large Scale Ocean Circulation and El Nino, Springer Science & Business Media, 2005.Google Scholar

[16]

A. V. Fedorov and J. N. Brown, 'Equatorial waves' in Encyclopeida of Ocean Sciences edited by Steele, J, Academic Press, San Diego, (2009), 3679–3695.Google Scholar

[17]

N. P. Fofonoff and R. B. Montgomery, The equatorial undercurrent in the light of the vorticity equation, Tellus, 7 (1955), 518-521. Google Scholar

[18] A. E. Gill, Atmosphere-ocean dynamics, Academic Press, New York, 2016.
[19]

A. E. Gill, The equatorial current in a homogeneous ocean, Deep Sea Res., 81 (1971), 421-431. Google Scholar

[20]

A. E. Gill, Models of equatorial currents, Proc. Numerical Models of Ocean Circulation, Nat. Acad. Sc., (1975), 181-203. Google Scholar

[21]

D. Henry, An exact solution for equatorial geophysical water waves with an underlying current, Eur. J. Mech.-B /Fluids, 38 (2013), 18-21. doi: 10.1016/j.euromechflu.2012.10.001. Google Scholar

[22]

D. Henry, Equatorially trapped nonlinear water waves in a $\beta$ -plane approximation with centripetal forces, J. Fluid Mech., 804 (2016), R1, 11pp. doi: 10.1017/jfm.2016.544. Google Scholar

[23]

D. Ionescu-Kruse and C. I. Martin, Periodic equatorial water flows from a Hamiltonian perspective, J. Differential Equations, 262 (2017), 4451-4474. doi: 10.1016/j.jde.2017.01.001. Google Scholar

[24]

G. C. JohnsonM. J. McPhaden and E. Firing, Equatorial Pacific Ocean horizontal velocity, divergence, and upwelling, J. Phys. Oceanogr., 31 (2001), 839-849. doi: 10.1175/1520-0485(2001)031<0839:EPOHVD>2.0.CO;2. Google Scholar

[25]

G. C. JohnsonB. M. SloyanW. S. Kessler and K. E. McTaggart, Direct measurements of upper ocean currents and water properties across the tropical Pacific during the 1990s, Progr. Oceanogr., 52 (2002), 31-61. doi: 10.1016/S0079-6611(02)00021-6. Google Scholar

[26]

W. S. Kessler, The circulation of the eastern tropical Pacific: A review, Progr. Oceanogr., 69 (2006), 181-217. doi: 10.1016/j.pocean.2006.03.009. Google Scholar

[27]

C. I. Martin, Two-dimensionality of gravity water flows governed by the equatorial f-plane approximation, Ann. Mat. Pura Appl., 196 (2017), 2253-2260. doi: 10.1007/s10231-017-0663-2. Google Scholar

[28]

J. P. McCreary, A linear stratified ocean model of the equatorial undercurrent, Phil. Trans. Roy. Soc. London A, 298 (1981), 603-635. doi: 10.1098/rsta.1981.0002. Google Scholar

[29]

J. P. McCreary Jr, Modeling equatorial ocean circulation, Annu. Rev. Fluid Mech., 17 (1985), 359-409. Google Scholar

[30]

J. P. McCreary Jr and P. Lu, Interaction between the subtropical and equatorial ocean circulations: the subtropical cell, J. Phys. Oceanogr., 24 (1994), 466-497. Google Scholar

[31]

W. D. McKee, The wind-driven equatorial circulation in a homogeneous ocean, Deep Sea Res., 20 (1973), 889-899. doi: 10.1016/0011-7471(73)90107-1. Google Scholar

[32]

J. Pedlosky, Thermocline theories, in General Circulation of the Ocean, Springer, (1987), 55–101. doi: 10.1007/978-1-4612-4636-7_2. Google Scholar

[33]

A. R. Robinson, An investigation into the wind as the cause of the equatorial undercurrent, J. Mar. Res., 24 (1966), 179-204. Google Scholar

[34]

H. Stommel, Wind-drift near the equator, Deep Sea Res., 6 (1960), 298-302. doi: 10.1016/0146-6313(59)90088-7. Google Scholar

[35]

L. D. Talley, G. L. Pickard, W. J. Emery and J. H. Swift, Descriptive Physical Oceanography: An Introduction, Elsevier, London, 2011.Google Scholar

[36]

G. Veronis, An approximate theoretical analysis of the equatorial undercurrent, Deep Sea Res., 6 (1959/60), 318-327. doi: 10.1016/0146-6313(59)90091-7. Google Scholar

show all references

References:
[1]

B. Basu, Some numerical investigations into a nonlinear three-dimensional model of Pacific equatorial ocean dynamics, Deep-Sea Res. II, 160 (2019), 7-15. Google Scholar

[2]

B. Basu, One a three-dimensional nonlinear model of Pacific equatorial ocean dynamics: Velocities and flow paths, Oceanography, 31(3) (2018), 51-58. Google Scholar

[3]

M. A. Cane, The response of an equatorial ocean to simple wind stress patterns: Ⅰ. Model formulation and analytical results, J. Mar. Res., 37 (1979), 232-252. Google Scholar

[4]

M. A. Cane, The response of an equatorial ocean to simple wind stress patterns: Ⅱ. Numerical results, J. Mar. Res., 6 (1979), 335-398. Google Scholar

[5]

J. R. Charney, Non-linear theory of a wind-driven homogeneous layer near the equator, Deep Sea Res., 6 (1959/60), 303-310. doi: 10.1016/0146-6313(59)90089-9. Google Scholar

[6]

A. Constantin, An exact solution for equatorially trapped waves, J. Geophys. Res.: Oceans, 117 (2012), C05029. doi: 10.1029/2012JC007879. Google Scholar

[7]

A. Constantin, On the modelling of equatorial waves, Geophys. Res. Lett., 39 (2012), L05602. doi: 10.1029/2012GL051169. Google Scholar

[8]

A. Constantin and P. Germain, Instability of some equatorially trapped waves, J. Geophys. Res.: Oceans, 118 (2013), 2802-2810. doi: 10.1002/jgrc.20219. Google Scholar

[9]

A. Constantin, Some nonlinear, equatorially trapped, nonhydrostatic internal geophysical waves, J. Phys. Oceanogr., 44 (2014), 781-789. doi: 10.1175/JPO-D-13-0174.1. Google Scholar

[10]

A. Constantin and R. S. Johnson, The dynamics of waves interacting with the Equatorial Undercurrent, Geophys. Astrophys. Fluid Dyn., 109 (2015), 311-358. doi: 10.1080/03091929.2015.1066785. Google Scholar

[11]

A. Constantin and R. S. Johnson, An exact, steady, purely azimuthal equatorial flow with a free surface, J. Phys. Oceanogr., 46 (2016), 1935-1945. doi: 10.1175/JPO-D-15-0205.1. Google Scholar

[12]

A. ConstantinR. I. Ivanov and C. I. Martin, Hamiltonian formulation for wave-current interactions in stratified rotational flows, Arch. Ration. Mech. Anal., 221 (2016), 1417-1447. doi: 10.1007/s00205-016-0990-2. Google Scholar

[13]

A. Constantin and R. S. Johnson, A nonlinear three-dimensional model for ocean flows, motivated by some observations of the Pacific Equatorial Undercurrent and thermocline, Phy. of Fluids, 29 (2017), 056604. Google Scholar

[14]

T. Cromwell, Circulation in a meridional plane in the central equatorial Pacific, J. Mar. Res., 12 (1953), 196-213. Google Scholar

[15]

H. A. Dijkstra, Nonlinear Physical Oceanography: A Dynamical Systems Approach to the Large Scale Ocean Circulation and El Nino, Springer Science & Business Media, 2005.Google Scholar

[16]

A. V. Fedorov and J. N. Brown, 'Equatorial waves' in Encyclopeida of Ocean Sciences edited by Steele, J, Academic Press, San Diego, (2009), 3679–3695.Google Scholar

[17]

N. P. Fofonoff and R. B. Montgomery, The equatorial undercurrent in the light of the vorticity equation, Tellus, 7 (1955), 518-521. Google Scholar

[18] A. E. Gill, Atmosphere-ocean dynamics, Academic Press, New York, 2016.
[19]

A. E. Gill, The equatorial current in a homogeneous ocean, Deep Sea Res., 81 (1971), 421-431. Google Scholar

[20]

A. E. Gill, Models of equatorial currents, Proc. Numerical Models of Ocean Circulation, Nat. Acad. Sc., (1975), 181-203. Google Scholar

[21]

D. Henry, An exact solution for equatorial geophysical water waves with an underlying current, Eur. J. Mech.-B /Fluids, 38 (2013), 18-21. doi: 10.1016/j.euromechflu.2012.10.001. Google Scholar

[22]

D. Henry, Equatorially trapped nonlinear water waves in a $\beta$ -plane approximation with centripetal forces, J. Fluid Mech., 804 (2016), R1, 11pp. doi: 10.1017/jfm.2016.544. Google Scholar

[23]

D. Ionescu-Kruse and C. I. Martin, Periodic equatorial water flows from a Hamiltonian perspective, J. Differential Equations, 262 (2017), 4451-4474. doi: 10.1016/j.jde.2017.01.001. Google Scholar

[24]

G. C. JohnsonM. J. McPhaden and E. Firing, Equatorial Pacific Ocean horizontal velocity, divergence, and upwelling, J. Phys. Oceanogr., 31 (2001), 839-849. doi: 10.1175/1520-0485(2001)031<0839:EPOHVD>2.0.CO;2. Google Scholar

[25]

G. C. JohnsonB. M. SloyanW. S. Kessler and K. E. McTaggart, Direct measurements of upper ocean currents and water properties across the tropical Pacific during the 1990s, Progr. Oceanogr., 52 (2002), 31-61. doi: 10.1016/S0079-6611(02)00021-6. Google Scholar

[26]

W. S. Kessler, The circulation of the eastern tropical Pacific: A review, Progr. Oceanogr., 69 (2006), 181-217. doi: 10.1016/j.pocean.2006.03.009. Google Scholar

[27]

C. I. Martin, Two-dimensionality of gravity water flows governed by the equatorial f-plane approximation, Ann. Mat. Pura Appl., 196 (2017), 2253-2260. doi: 10.1007/s10231-017-0663-2. Google Scholar

[28]

J. P. McCreary, A linear stratified ocean model of the equatorial undercurrent, Phil. Trans. Roy. Soc. London A, 298 (1981), 603-635. doi: 10.1098/rsta.1981.0002. Google Scholar

[29]

J. P. McCreary Jr, Modeling equatorial ocean circulation, Annu. Rev. Fluid Mech., 17 (1985), 359-409. Google Scholar

[30]

J. P. McCreary Jr and P. Lu, Interaction between the subtropical and equatorial ocean circulations: the subtropical cell, J. Phys. Oceanogr., 24 (1994), 466-497. Google Scholar

[31]

W. D. McKee, The wind-driven equatorial circulation in a homogeneous ocean, Deep Sea Res., 20 (1973), 889-899. doi: 10.1016/0011-7471(73)90107-1. Google Scholar

[32]

J. Pedlosky, Thermocline theories, in General Circulation of the Ocean, Springer, (1987), 55–101. doi: 10.1007/978-1-4612-4636-7_2. Google Scholar

[33]

A. R. Robinson, An investigation into the wind as the cause of the equatorial undercurrent, J. Mar. Res., 24 (1966), 179-204. Google Scholar

[34]

H. Stommel, Wind-drift near the equator, Deep Sea Res., 6 (1960), 298-302. doi: 10.1016/0146-6313(59)90088-7. Google Scholar

[35]

L. D. Talley, G. L. Pickard, W. J. Emery and J. H. Swift, Descriptive Physical Oceanography: An Introduction, Elsevier, London, 2011.Google Scholar

[36]

G. Veronis, An approximate theoretical analysis of the equatorial undercurrent, Deep Sea Res., 6 (1959/60), 318-327. doi: 10.1016/0146-6313(59)90091-7. Google Scholar

Figure 1.  A schematic of the structure of the equatorial ocean flow
Figure 2.  The rotating frame of reference based on tangent plane, with the $ \overline{x} $ axis chosen horizontally due east, the $ \overline{y} $ axis horizontally due north and the $ \overline{\overline z} $ axis vertically upward
[1]

Qiao-Fang Lian, Yun-Zhang Li. Reducing subspace frame multiresolution analysis and frame wavelets. Communications on Pure & Applied Analysis, 2007, 6 (3) : 741-756. doi: 10.3934/cpaa.2007.6.741

[2]

Matthias Gerdts, Martin Kunkel. Convergence analysis of Euler discretization of control-state constrained optimal control problems with controls of bounded variation. Journal of Industrial & Management Optimization, 2014, 10 (1) : 311-336. doi: 10.3934/jimo.2014.10.311

[3]

Sofía Nieto, Guillermo Reyes. Asymptotic behavior of the solutions of the inhomogeneous Porous Medium Equation with critical vanishing density. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1123-1139. doi: 10.3934/cpaa.2013.12.1123

[4]

Gabriele Grillo, Matteo Muratori, Fabio Punzo. On the asymptotic behaviour of solutions to the fractional porous medium equation with variable density. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5927-5962. doi: 10.3934/dcds.2015.35.5927

[5]

Isabelle Gallagher. A mathematical review of the analysis of the betaplane model and equatorial waves. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 461-480. doi: 10.3934/dcdss.2008.1.461

[6]

Thomas Y. Hou, Danping Yang, Hongyu Ran. Multiscale analysis in Lagrangian formulation for the 2-D incompressible Euler equation. Discrete & Continuous Dynamical Systems - A, 2005, 13 (5) : 1153-1186. doi: 10.3934/dcds.2005.13.1153

[7]

Haigang Li, Jiguang Bao. Euler-Poisson equations related to general compressible rotating fluids. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1085-1096. doi: 10.3934/dcds.2011.29.1085

[8]

Fathi Hassine. Asymptotic behavior of the transmission Euler-Bernoulli plate and wave equation with a localized Kelvin-Voigt damping. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1757-1774. doi: 10.3934/dcdsb.2016021

[9]

David Mumford, Peter W. Michor. On Euler's equation and 'EPDiff'. Journal of Geometric Mechanics, 2013, 5 (3) : 319-344. doi: 10.3934/jgm.2013.5.319

[10]

Jorge Clarke, Christian Olivera, Ciprian Tudor. The transport equation and zero quadratic variation processes. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 2991-3002. doi: 10.3934/dcdsb.2016083

[11]

Mikaela Iacobelli. Asymptotic analysis for a very fast diffusion equation arising from the 1D quantization problem. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 4929-4943. doi: 10.3934/dcds.2019201

[12]

Giovanni Bonfanti, Arrigo Cellina. The validity of the Euler-Lagrange equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 511-517. doi: 10.3934/dcds.2010.28.511

[13]

César Nieto, Mauricio Giraldo, Henry Power. Boundary integral equation approach for stokes slip flow in rotating mixers. Discrete & Continuous Dynamical Systems - B, 2011, 15 (4) : 1019-1044. doi: 10.3934/dcdsb.2011.15.1019

[14]

Wanbiao Ma, Yasuhiro Takeuchi. Asymptotic properties of a delayed SIR epidemic model with density dependent birth rate. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 671-678. doi: 10.3934/dcdsb.2004.4.671

[15]

Juan Carlos De los Reyes, Estefanía Loayza-Romero. Total generalized variation regularization in data assimilation for Burgers' equation. Inverse Problems & Imaging, 2019, 13 (4) : 755-786. doi: 10.3934/ipi.2019035

[16]

Moncef Aouadi, Taoufik Moulahi. Asymptotic analysis of a nonsimple thermoelastic rod. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1475-1492. doi: 10.3934/dcdss.2016059

[17]

Enrique Fernández-Cara. Motivation, analysis and control of the variable density Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2012, 5 (6) : 1021-1090. doi: 10.3934/dcdss.2012.5.1021

[18]

La-Su Mai, Kaijun Zhang. Asymptotic stability of steady state solutions for the relativistic Euler-Poisson equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 981-1004. doi: 10.3934/dcds.2016.36.981

[19]

Masahiro Suzuki. Asymptotic stability of a boundary layer to the Euler--Poisson equations for a multicomponent plasma. Kinetic & Related Models, 2016, 9 (3) : 587-603. doi: 10.3934/krm.2016008

[20]

Chunqing Lu. Asymptotic solutions of a nonlinear equation. Conference Publications, 2003, 2003 (Special) : 590-595. doi: 10.3934/proc.2003.2003.590

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (46)
  • HTML views (111)
  • Cited by (0)

Other articles
by authors

[Back to Top]