August  2019, 39(8): 4783-4796. doi: 10.3934/dcds.2019195

On an exact solution of a nonlinear three-dimensional model in ocean flows with equatorial undercurrent and linear variation in density

School of Engineering, Trinity College Dublin, Dublin 2, Ireland

* Corresponding author: Biswajit Basu

The paper is for the special theme: Mathematical Aspects of Physical Oceanography, organized by Adrian Constantin

Received  October 2018 Revised  January 2019 Published  May 2019

The aim of the paper is to develop an exact solution relating to a system of model equations representing ocean flows with Equatorial Undercurrent and thermocline in the presence of linear variation of density with depth. The system of equations is generated from the Euler equations represented in a suitable rotating frame by following a careful asymptotic approach.The study in this paper is motivated by the recently developed Constantin-Johnson model [13] for Pacific flows with undercurrent and the exact results provided therein. The model formulated is two-layered, three-dimensional and nonlinear with a symmetric structure about the equator. The equations contain Coriolis effect and is consistent with $ \beta $ - plane approximation. Exact results of the asymptotic system of equations have been derived in a region close to the equator.

Citation: Biswajit Basu. On an exact solution of a nonlinear three-dimensional model in ocean flows with equatorial undercurrent and linear variation in density. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4783-4796. doi: 10.3934/dcds.2019195
References:
[1]

B. Basu, Some numerical investigations into a nonlinear three-dimensional model of Pacific equatorial ocean dynamics, Deep-Sea Res. II, 160 (2019), 7-15.   Google Scholar

[2]

B. Basu, One a three-dimensional nonlinear model of Pacific equatorial ocean dynamics: Velocities and flow paths, Oceanography, 31(3) (2018), 51-58.   Google Scholar

[3]

M. A. Cane, The response of an equatorial ocean to simple wind stress patterns: Ⅰ. Model formulation and analytical results, J. Mar. Res., 37 (1979), 232-252.   Google Scholar

[4]

M. A. Cane, The response of an equatorial ocean to simple wind stress patterns: Ⅱ. Numerical results, J. Mar. Res., 6 (1979), 335-398.   Google Scholar

[5]

J. R. Charney, Non-linear theory of a wind-driven homogeneous layer near the equator, Deep Sea Res., 6 (1959/60), 303-310.  doi: 10.1016/0146-6313(59)90089-9.  Google Scholar

[6]

A. Constantin, An exact solution for equatorially trapped waves, J. Geophys. Res.: Oceans, 117 (2012), C05029.  doi: 10.1029/2012JC007879.  Google Scholar

[7]

A. Constantin, On the modelling of equatorial waves, Geophys. Res. Lett., 39 (2012), L05602.  doi: 10.1029/2012GL051169.  Google Scholar

[8]

A. Constantin and P. Germain, Instability of some equatorially trapped waves, J. Geophys. Res.: Oceans, 118 (2013), 2802-2810.  doi: 10.1002/jgrc.20219.  Google Scholar

[9]

A. Constantin, Some nonlinear, equatorially trapped, nonhydrostatic internal geophysical waves, J. Phys. Oceanogr., 44 (2014), 781-789.  doi: 10.1175/JPO-D-13-0174.1.  Google Scholar

[10]

A. Constantin and R. S. Johnson, The dynamics of waves interacting with the Equatorial Undercurrent, Geophys. Astrophys. Fluid Dyn., 109 (2015), 311-358.  doi: 10.1080/03091929.2015.1066785.  Google Scholar

[11]

A. Constantin and R. S. Johnson, An exact, steady, purely azimuthal equatorial flow with a free surface, J. Phys. Oceanogr., 46 (2016), 1935-1945.  doi: 10.1175/JPO-D-15-0205.1.  Google Scholar

[12]

A. ConstantinR. I. Ivanov and C. I. Martin, Hamiltonian formulation for wave-current interactions in stratified rotational flows, Arch. Ration. Mech. Anal., 221 (2016), 1417-1447.  doi: 10.1007/s00205-016-0990-2.  Google Scholar

[13]

A. Constantin and R. S. Johnson, A nonlinear three-dimensional model for ocean flows, motivated by some observations of the Pacific Equatorial Undercurrent and thermocline, Phy. of Fluids, 29 (2017), 056604.   Google Scholar

[14]

T. Cromwell, Circulation in a meridional plane in the central equatorial Pacific, J. Mar. Res., 12 (1953), 196-213.   Google Scholar

[15]

H. A. Dijkstra, Nonlinear Physical Oceanography: A Dynamical Systems Approach to the Large Scale Ocean Circulation and El Nino, Springer Science & Business Media, 2005. Google Scholar

[16]

A. V. Fedorov and J. N. Brown, 'Equatorial waves' in Encyclopeida of Ocean Sciences edited by Steele, J, Academic Press, San Diego, (2009), 3679–3695. Google Scholar

[17]

N. P. Fofonoff and R. B. Montgomery, The equatorial undercurrent in the light of the vorticity equation, Tellus, 7 (1955), 518-521.   Google Scholar

[18] A. E. Gill, Atmosphere-ocean dynamics, Academic Press, New York, 2016.   Google Scholar
[19]

A. E. Gill, The equatorial current in a homogeneous ocean, Deep Sea Res., 81 (1971), 421-431.   Google Scholar

[20]

A. E. Gill, Models of equatorial currents, Proc. Numerical Models of Ocean Circulation, Nat. Acad. Sc., (1975), 181-203.   Google Scholar

[21]

D. Henry, An exact solution for equatorial geophysical water waves with an underlying current, Eur. J. Mech.-B /Fluids, 38 (2013), 18-21.  doi: 10.1016/j.euromechflu.2012.10.001.  Google Scholar

[22]

D. Henry, Equatorially trapped nonlinear water waves in a $\beta$ -plane approximation with centripetal forces, J. Fluid Mech., 804 (2016), R1, 11pp. doi: 10.1017/jfm.2016.544.  Google Scholar

[23]

D. Ionescu-Kruse and C. I. Martin, Periodic equatorial water flows from a Hamiltonian perspective, J. Differential Equations, 262 (2017), 4451-4474.  doi: 10.1016/j.jde.2017.01.001.  Google Scholar

[24]

G. C. JohnsonM. J. McPhaden and E. Firing, Equatorial Pacific Ocean horizontal velocity, divergence, and upwelling, J. Phys. Oceanogr., 31 (2001), 839-849.  doi: 10.1175/1520-0485(2001)031<0839:EPOHVD>2.0.CO;2.  Google Scholar

[25]

G. C. JohnsonB. M. SloyanW. S. Kessler and K. E. McTaggart, Direct measurements of upper ocean currents and water properties across the tropical Pacific during the 1990s, Progr. Oceanogr., 52 (2002), 31-61.  doi: 10.1016/S0079-6611(02)00021-6.  Google Scholar

[26]

W. S. Kessler, The circulation of the eastern tropical Pacific: A review, Progr. Oceanogr., 69 (2006), 181-217.  doi: 10.1016/j.pocean.2006.03.009.  Google Scholar

[27]

C. I. Martin, Two-dimensionality of gravity water flows governed by the equatorial f-plane approximation, Ann. Mat. Pura Appl., 196 (2017), 2253-2260.  doi: 10.1007/s10231-017-0663-2.  Google Scholar

[28]

J. P. McCreary, A linear stratified ocean model of the equatorial undercurrent, Phil. Trans. Roy. Soc. London A, 298 (1981), 603-635.  doi: 10.1098/rsta.1981.0002.  Google Scholar

[29]

J. P. McCreary Jr, Modeling equatorial ocean circulation, Annu. Rev. Fluid Mech., 17 (1985), 359-409.   Google Scholar

[30]

J. P. McCreary Jr and P. Lu, Interaction between the subtropical and equatorial ocean circulations: the subtropical cell, J. Phys. Oceanogr., 24 (1994), 466-497.   Google Scholar

[31]

W. D. McKee, The wind-driven equatorial circulation in a homogeneous ocean, Deep Sea Res., 20 (1973), 889-899.  doi: 10.1016/0011-7471(73)90107-1.  Google Scholar

[32]

J. Pedlosky, Thermocline theories, in General Circulation of the Ocean, Springer, (1987), 55–101. doi: 10.1007/978-1-4612-4636-7_2.  Google Scholar

[33]

A. R. Robinson, An investigation into the wind as the cause of the equatorial undercurrent, J. Mar. Res., 24 (1966), 179-204.   Google Scholar

[34]

H. Stommel, Wind-drift near the equator, Deep Sea Res., 6 (1960), 298-302.  doi: 10.1016/0146-6313(59)90088-7.  Google Scholar

[35]

L. D. Talley, G. L. Pickard, W. J. Emery and J. H. Swift, Descriptive Physical Oceanography: An Introduction, Elsevier, London, 2011. Google Scholar

[36]

G. Veronis, An approximate theoretical analysis of the equatorial undercurrent, Deep Sea Res., 6 (1959/60), 318-327.  doi: 10.1016/0146-6313(59)90091-7.  Google Scholar

show all references

References:
[1]

B. Basu, Some numerical investigations into a nonlinear three-dimensional model of Pacific equatorial ocean dynamics, Deep-Sea Res. II, 160 (2019), 7-15.   Google Scholar

[2]

B. Basu, One a three-dimensional nonlinear model of Pacific equatorial ocean dynamics: Velocities and flow paths, Oceanography, 31(3) (2018), 51-58.   Google Scholar

[3]

M. A. Cane, The response of an equatorial ocean to simple wind stress patterns: Ⅰ. Model formulation and analytical results, J. Mar. Res., 37 (1979), 232-252.   Google Scholar

[4]

M. A. Cane, The response of an equatorial ocean to simple wind stress patterns: Ⅱ. Numerical results, J. Mar. Res., 6 (1979), 335-398.   Google Scholar

[5]

J. R. Charney, Non-linear theory of a wind-driven homogeneous layer near the equator, Deep Sea Res., 6 (1959/60), 303-310.  doi: 10.1016/0146-6313(59)90089-9.  Google Scholar

[6]

A. Constantin, An exact solution for equatorially trapped waves, J. Geophys. Res.: Oceans, 117 (2012), C05029.  doi: 10.1029/2012JC007879.  Google Scholar

[7]

A. Constantin, On the modelling of equatorial waves, Geophys. Res. Lett., 39 (2012), L05602.  doi: 10.1029/2012GL051169.  Google Scholar

[8]

A. Constantin and P. Germain, Instability of some equatorially trapped waves, J. Geophys. Res.: Oceans, 118 (2013), 2802-2810.  doi: 10.1002/jgrc.20219.  Google Scholar

[9]

A. Constantin, Some nonlinear, equatorially trapped, nonhydrostatic internal geophysical waves, J. Phys. Oceanogr., 44 (2014), 781-789.  doi: 10.1175/JPO-D-13-0174.1.  Google Scholar

[10]

A. Constantin and R. S. Johnson, The dynamics of waves interacting with the Equatorial Undercurrent, Geophys. Astrophys. Fluid Dyn., 109 (2015), 311-358.  doi: 10.1080/03091929.2015.1066785.  Google Scholar

[11]

A. Constantin and R. S. Johnson, An exact, steady, purely azimuthal equatorial flow with a free surface, J. Phys. Oceanogr., 46 (2016), 1935-1945.  doi: 10.1175/JPO-D-15-0205.1.  Google Scholar

[12]

A. ConstantinR. I. Ivanov and C. I. Martin, Hamiltonian formulation for wave-current interactions in stratified rotational flows, Arch. Ration. Mech. Anal., 221 (2016), 1417-1447.  doi: 10.1007/s00205-016-0990-2.  Google Scholar

[13]

A. Constantin and R. S. Johnson, A nonlinear three-dimensional model for ocean flows, motivated by some observations of the Pacific Equatorial Undercurrent and thermocline, Phy. of Fluids, 29 (2017), 056604.   Google Scholar

[14]

T. Cromwell, Circulation in a meridional plane in the central equatorial Pacific, J. Mar. Res., 12 (1953), 196-213.   Google Scholar

[15]

H. A. Dijkstra, Nonlinear Physical Oceanography: A Dynamical Systems Approach to the Large Scale Ocean Circulation and El Nino, Springer Science & Business Media, 2005. Google Scholar

[16]

A. V. Fedorov and J. N. Brown, 'Equatorial waves' in Encyclopeida of Ocean Sciences edited by Steele, J, Academic Press, San Diego, (2009), 3679–3695. Google Scholar

[17]

N. P. Fofonoff and R. B. Montgomery, The equatorial undercurrent in the light of the vorticity equation, Tellus, 7 (1955), 518-521.   Google Scholar

[18] A. E. Gill, Atmosphere-ocean dynamics, Academic Press, New York, 2016.   Google Scholar
[19]

A. E. Gill, The equatorial current in a homogeneous ocean, Deep Sea Res., 81 (1971), 421-431.   Google Scholar

[20]

A. E. Gill, Models of equatorial currents, Proc. Numerical Models of Ocean Circulation, Nat. Acad. Sc., (1975), 181-203.   Google Scholar

[21]

D. Henry, An exact solution for equatorial geophysical water waves with an underlying current, Eur. J. Mech.-B /Fluids, 38 (2013), 18-21.  doi: 10.1016/j.euromechflu.2012.10.001.  Google Scholar

[22]

D. Henry, Equatorially trapped nonlinear water waves in a $\beta$ -plane approximation with centripetal forces, J. Fluid Mech., 804 (2016), R1, 11pp. doi: 10.1017/jfm.2016.544.  Google Scholar

[23]

D. Ionescu-Kruse and C. I. Martin, Periodic equatorial water flows from a Hamiltonian perspective, J. Differential Equations, 262 (2017), 4451-4474.  doi: 10.1016/j.jde.2017.01.001.  Google Scholar

[24]

G. C. JohnsonM. J. McPhaden and E. Firing, Equatorial Pacific Ocean horizontal velocity, divergence, and upwelling, J. Phys. Oceanogr., 31 (2001), 839-849.  doi: 10.1175/1520-0485(2001)031<0839:EPOHVD>2.0.CO;2.  Google Scholar

[25]

G. C. JohnsonB. M. SloyanW. S. Kessler and K. E. McTaggart, Direct measurements of upper ocean currents and water properties across the tropical Pacific during the 1990s, Progr. Oceanogr., 52 (2002), 31-61.  doi: 10.1016/S0079-6611(02)00021-6.  Google Scholar

[26]

W. S. Kessler, The circulation of the eastern tropical Pacific: A review, Progr. Oceanogr., 69 (2006), 181-217.  doi: 10.1016/j.pocean.2006.03.009.  Google Scholar

[27]

C. I. Martin, Two-dimensionality of gravity water flows governed by the equatorial f-plane approximation, Ann. Mat. Pura Appl., 196 (2017), 2253-2260.  doi: 10.1007/s10231-017-0663-2.  Google Scholar

[28]

J. P. McCreary, A linear stratified ocean model of the equatorial undercurrent, Phil. Trans. Roy. Soc. London A, 298 (1981), 603-635.  doi: 10.1098/rsta.1981.0002.  Google Scholar

[29]

J. P. McCreary Jr, Modeling equatorial ocean circulation, Annu. Rev. Fluid Mech., 17 (1985), 359-409.   Google Scholar

[30]

J. P. McCreary Jr and P. Lu, Interaction between the subtropical and equatorial ocean circulations: the subtropical cell, J. Phys. Oceanogr., 24 (1994), 466-497.   Google Scholar

[31]

W. D. McKee, The wind-driven equatorial circulation in a homogeneous ocean, Deep Sea Res., 20 (1973), 889-899.  doi: 10.1016/0011-7471(73)90107-1.  Google Scholar

[32]

J. Pedlosky, Thermocline theories, in General Circulation of the Ocean, Springer, (1987), 55–101. doi: 10.1007/978-1-4612-4636-7_2.  Google Scholar

[33]

A. R. Robinson, An investigation into the wind as the cause of the equatorial undercurrent, J. Mar. Res., 24 (1966), 179-204.   Google Scholar

[34]

H. Stommel, Wind-drift near the equator, Deep Sea Res., 6 (1960), 298-302.  doi: 10.1016/0146-6313(59)90088-7.  Google Scholar

[35]

L. D. Talley, G. L. Pickard, W. J. Emery and J. H. Swift, Descriptive Physical Oceanography: An Introduction, Elsevier, London, 2011. Google Scholar

[36]

G. Veronis, An approximate theoretical analysis of the equatorial undercurrent, Deep Sea Res., 6 (1959/60), 318-327.  doi: 10.1016/0146-6313(59)90091-7.  Google Scholar

Figure 1.  A schematic of the structure of the equatorial ocean flow
Figure 2.  The rotating frame of reference based on tangent plane, with the $ \overline{x} $ axis chosen horizontally due east, the $ \overline{y} $ axis horizontally due north and the $ \overline{\overline z} $ axis vertically upward
[1]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[2]

Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263

[3]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[4]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[5]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[6]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[7]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[8]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[9]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[10]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[11]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[12]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[13]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[14]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[15]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[16]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[17]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[18]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[19]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[20]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (120)
  • HTML views (153)
  • Cited by (2)

Other articles
by authors

[Back to Top]