August  2019, 39(8): 4841-4861. doi: 10.3934/dcds.2019197

A random cocycle with non Hölder Lyapunov exponent

1. 

Departamento de Matemática and CMAFCIO, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Edifício C6, Piso 2, 1749-016 Lisboa, Portugal

2. 

Departamento de Matemática, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rua Marquês de São Vicente 225, Rio de Janeiro, RJ, 22430-060, Brazil

3. 

Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal

Received  November 2018 Revised  February 2019 Published  May 2019

Fund Project: The first author was supported by Fundação para a Ciência e a Tecnologia (FCT, Portugal) under the projects: UID/MAT/04561/2013 and PTDC/MAT-PUR/29126/2017. The second author was supported by the CNPq research grant 306369/2017-6 (Brazil), by a research productivity grant from his institution (PUC-Rio) and by the FCT grant PTDC/MAT-PUR/29126/2017. The third author was supported by a grant given by the Calouste Gulbenkien Foundation, under the project Programa Novos Talentos em Matemática da Fundação Calouste Gulbenkian.

We provide an example of a Schrödinger cocycle over a mixing Markov shift for which the integrated density of states has a very weak modulus of continuity, close to the log-Hölder lower bound established by W. Craig and B. Simon in [6]. This model is based upon a classical example due to Y. Kifer [15] of a random Bernoulli cocycle with zero Lyapunov exponents which is not strongly irreducible. It follows that the Lyapunov exponent of a Bernoulli cocycle near this Kifer example cannot be Hölder or weak-Hölder continuous, thus providing a limitation on the modulus of continuity of the Lyapunov exponent of random cocycles.

Citation: Pedro Duarte, Silvius Klein, Manuel Santos. A random cocycle with non Hölder Lyapunov exponent. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4841-4861. doi: 10.3934/dcds.2019197
References:
[1]

A. Avila, On the spectrum and Lyapunov exponent of limit periodic Schrödinger operators, Comm. Math. Phys., 288 (2009), 907-918.  doi: 10.1007/s00220-008-0667-2.

[2]

A. Avila, Y. Last, M. Shamis and Q. Zhou, On the Abominable Properties of the Almost Mathieu Operator, in preparation.

[3]

A. Baraviera and P. Duarte, Approximating Lyapunov exponents and stationary measures, J Dyn Diff Equat, 31 (2019), 25-48.  doi: 10.1007/s10884-018-9724-5.

[4]

C. Bocker-Neto and M. Viana, Continuity of Lyapunov exponents for random two-dimensional matrices, Ergodic Theory Dynam. Systems, 37 (2017), 1413-1442.  doi: 10.1017/etds.2015.116.

[5]

W. Craig, Pure point spectrum for discrete almost periodic Schrödinger operators, Comm. Math. Phys., 88 (1983), 113-131.  doi: 10.1007/BF01206883.

[6]

W. Craig and B. Simon, Log Hölder continuity of the integrated density of states for stochastic Jacobi matrices, Comm. Math. Phys., 90 (1983), 207-218.  doi: 10.1007/BF01205503.

[7]

D. Damanik, Schrödinger operators with dynamically defined potentials, Ergodic Theory Dynam. Systems, 37 (2017), 1681-1764.  doi: 10.1017/etds.2015.120.

[8] P. Duarte and S. Klein, Lyapunov Exponents of Linear Cocycles,, Continuity via large deviations. Atlantis Studies in Dynamical Systems, 3. Atlantis Press, Paris, 2016.  doi: 10.2991/978-94-6239-124-6.
[9]

____, Continuity of the Lyapunov Exponents of Linear Cocycles, Publicações Matemáticas, $31^\circ$ Colóquio Brasileiro de Matemática, IMPA, 2017, https://impa.br/wp-content/uploads/2017/08/31CBM_02.pdf

[10]

____, Large deviations for products of random two dimensional matrices, preprint, 2018.

[11]

H. Furstenberg and H. Kesten, Products of random matrices, Ann. Math. Statist., 31 (1960), 457-469.  doi: 10.1214/aoms/1177705909.

[12]

H. Furstenberg and Y. Kifer, Random matrix products and measures on projective spaces, Israel J. Math., 46 (1983), 12-32.  doi: 10.1007/BF02760620.

[13]

H. Furstenberg, Noncommuting random products, Trans. Amer. Math. Soc., 108 (1963), 377-428.  doi: 10.1090/S0002-9947-1963-0163345-0.

[14]

M. Goldstein and W. Schlag, Hölder continuity of the integrated density of states for quasi-periodic Schrödinger equations and averages of shifts of subharmonic functions, Ann. of Math., (2) 154 (2001), 155-203. doi: 10.2307/3062114.

[15]

Y. Kifer, Perturbations of random matrix products, Z. Wahrsch. Verw. Gebiete, 61 (1982), 83-95.  doi: 10.1007/BF00537227.

[16]

H. Krüger and Z. Gan, Optimality of log Hölder continuity of the integrated density of states, Math. Nachr., 284 (2011), 1919-1923.  doi: 10.1002/mana.200910139.

[17]

É. Le Page, Régularité du plus grand exposant caractéristique des produits de matrices aléatoires indépendantes et applications, Ann. Inst. H. Poincaré Probab. Statist., 25 (1989), 109-142. 

[18]

E. C. Malheiro and M. Viana, Lyapunov exponents of linear cocycles over Markov shifts, Stoch. Dyn., 15 (2015), 1550020, 27pp. doi: 10.1142/S0219493715500203.

[19]

J. Pöschel, Examples of discrete Schrödinger operators with pure point spectrum, Comm. Math. Phys., 88 (1983), 447-463.  doi: 10.1007/BF01211953.

[20]

B. Simon and M. Taylor, Harmonic analysis on SL (2, R) and smoothness of the density of states in the one-dimensional Anderson model, Comm. Math. Phys., 101 (1985), 1-19.  doi: 10.1007/BF01212354.

[21] N. J. A. Sloane and S. Plouffe, The Encyclopedia of Integer Sequences, Academic Press, Inc., San Diego, CA, 1995. 
[22]

E. H. Y. Tall and M. Viana, Moduli of Continuity for Lyapunov Exponents of Random GL(2) Cocycles, preprint, 2018, http://w3.impa.br/~viana/out/holder.pdf.

[23]

T. Tao, Topics in Random Matrix Theory, Graduate Studies in Mathematics, vol. 132, American Mathematical Society, Providence, RI, 2012. doi: 10.1090/gsm/132.

[24]

M. Viana, Lectures on Lyapunov Exponents, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 2014. doi: 10.1017/CBO9781139976602.

show all references

References:
[1]

A. Avila, On the spectrum and Lyapunov exponent of limit periodic Schrödinger operators, Comm. Math. Phys., 288 (2009), 907-918.  doi: 10.1007/s00220-008-0667-2.

[2]

A. Avila, Y. Last, M. Shamis and Q. Zhou, On the Abominable Properties of the Almost Mathieu Operator, in preparation.

[3]

A. Baraviera and P. Duarte, Approximating Lyapunov exponents and stationary measures, J Dyn Diff Equat, 31 (2019), 25-48.  doi: 10.1007/s10884-018-9724-5.

[4]

C. Bocker-Neto and M. Viana, Continuity of Lyapunov exponents for random two-dimensional matrices, Ergodic Theory Dynam. Systems, 37 (2017), 1413-1442.  doi: 10.1017/etds.2015.116.

[5]

W. Craig, Pure point spectrum for discrete almost periodic Schrödinger operators, Comm. Math. Phys., 88 (1983), 113-131.  doi: 10.1007/BF01206883.

[6]

W. Craig and B. Simon, Log Hölder continuity of the integrated density of states for stochastic Jacobi matrices, Comm. Math. Phys., 90 (1983), 207-218.  doi: 10.1007/BF01205503.

[7]

D. Damanik, Schrödinger operators with dynamically defined potentials, Ergodic Theory Dynam. Systems, 37 (2017), 1681-1764.  doi: 10.1017/etds.2015.120.

[8] P. Duarte and S. Klein, Lyapunov Exponents of Linear Cocycles,, Continuity via large deviations. Atlantis Studies in Dynamical Systems, 3. Atlantis Press, Paris, 2016.  doi: 10.2991/978-94-6239-124-6.
[9]

____, Continuity of the Lyapunov Exponents of Linear Cocycles, Publicações Matemáticas, $31^\circ$ Colóquio Brasileiro de Matemática, IMPA, 2017, https://impa.br/wp-content/uploads/2017/08/31CBM_02.pdf

[10]

____, Large deviations for products of random two dimensional matrices, preprint, 2018.

[11]

H. Furstenberg and H. Kesten, Products of random matrices, Ann. Math. Statist., 31 (1960), 457-469.  doi: 10.1214/aoms/1177705909.

[12]

H. Furstenberg and Y. Kifer, Random matrix products and measures on projective spaces, Israel J. Math., 46 (1983), 12-32.  doi: 10.1007/BF02760620.

[13]

H. Furstenberg, Noncommuting random products, Trans. Amer. Math. Soc., 108 (1963), 377-428.  doi: 10.1090/S0002-9947-1963-0163345-0.

[14]

M. Goldstein and W. Schlag, Hölder continuity of the integrated density of states for quasi-periodic Schrödinger equations and averages of shifts of subharmonic functions, Ann. of Math., (2) 154 (2001), 155-203. doi: 10.2307/3062114.

[15]

Y. Kifer, Perturbations of random matrix products, Z. Wahrsch. Verw. Gebiete, 61 (1982), 83-95.  doi: 10.1007/BF00537227.

[16]

H. Krüger and Z. Gan, Optimality of log Hölder continuity of the integrated density of states, Math. Nachr., 284 (2011), 1919-1923.  doi: 10.1002/mana.200910139.

[17]

É. Le Page, Régularité du plus grand exposant caractéristique des produits de matrices aléatoires indépendantes et applications, Ann. Inst. H. Poincaré Probab. Statist., 25 (1989), 109-142. 

[18]

E. C. Malheiro and M. Viana, Lyapunov exponents of linear cocycles over Markov shifts, Stoch. Dyn., 15 (2015), 1550020, 27pp. doi: 10.1142/S0219493715500203.

[19]

J. Pöschel, Examples of discrete Schrödinger operators with pure point spectrum, Comm. Math. Phys., 88 (1983), 447-463.  doi: 10.1007/BF01211953.

[20]

B. Simon and M. Taylor, Harmonic analysis on SL (2, R) and smoothness of the density of states in the one-dimensional Anderson model, Comm. Math. Phys., 101 (1985), 1-19.  doi: 10.1007/BF01212354.

[21] N. J. A. Sloane and S. Plouffe, The Encyclopedia of Integer Sequences, Academic Press, Inc., San Diego, CA, 1995. 
[22]

E. H. Y. Tall and M. Viana, Moduli of Continuity for Lyapunov Exponents of Random GL(2) Cocycles, preprint, 2018, http://w3.impa.br/~viana/out/holder.pdf.

[23]

T. Tao, Topics in Random Matrix Theory, Graduate Studies in Mathematics, vol. 132, American Mathematical Society, Providence, RI, 2012. doi: 10.1090/gsm/132.

[24]

M. Viana, Lectures on Lyapunov Exponents, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 2014. doi: 10.1017/CBO9781139976602.

Figure 1.  Graph of the Markov chain on Σ
Table 1.  Pascal’s triangle for the numbers a(n, i)
$i$ $\cdots$ $-4$ $-3$ $-2$ $-1$ $0$ $+1$ $+2$ $+3$ $+4$ $+5$ $\cdots$
$a(1, i)$ $1$ $1$
$a(2, i)$ $1$ $1$ $1$ $1$
$a(3, i)$ $1$ $1$ $2$ $2$ $1$ $1$
$a(4, i)$ $1$ $1$ $3$ $3$ $3$ $3$ $1$ $1$
$a(5, i)$ $1$ $1$ $4$ $4$ $6$ $6$ $4$ $4$ $1$ $1$
$i$ $\cdots$ $-4$ $-3$ $-2$ $-1$ $0$ $+1$ $+2$ $+3$ $+4$ $+5$ $\cdots$
$a(1, i)$ $1$ $1$
$a(2, i)$ $1$ $1$ $1$ $1$
$a(3, i)$ $1$ $1$ $2$ $2$ $1$ $1$
$a(4, i)$ $1$ $1$ $3$ $3$ $3$ $3$ $1$ $1$
$a(5, i)$ $1$ $1$ $4$ $4$ $6$ $6$ $4$ $4$ $1$ $1$
Table 2.  Narayana's cows sequence a(n)
$n$ $0$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $\cdots$
$a(n)$ $1$ $1$ $1$ $2$ $3$ $4$ $6$ $9$ $13$ $\cdots$
$n$ $0$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $\cdots$
$a(n)$ $1$ $1$ $1$ $2$ $3$ $4$ $6$ $9$ $13$ $\cdots$
Table 3.  Quantitative results on the continuity of the LE for $\mathrm{GL}_{2}(\mathbb{R})$ random cocycles with strictly positive LE
Cocycle class Positive results Negative results
Non diagonalizable [17,Théorèmes 1,2], [3,Theorem 1] [20,Appendix 3]
Diagonalizable [10,Theorem 1.2], [22,Theorem B]
Cocycle class Positive results Negative results
Non diagonalizable [17,Théorèmes 1,2], [3,Theorem 1] [20,Appendix 3]
Diagonalizable [10,Theorem 1.2], [22,Theorem B]
Table 4.  Quantitative results on the continuity of the LE for $\mathrm{GL}_{2}(\mathbb{R})$ random cocycles with zero LE
Cocycle class Positive results Negative results
Strongly irreducible This paper, Proposition 11
Non strongly irreducible [22 Theorem C] This paper, Theorem 2
Cocycle class Positive results Negative results
Strongly irreducible This paper, Proposition 11
Non strongly irreducible [22 Theorem C] This paper, Theorem 2
[1]

Mengyao Chen, Qi Li, Shuangjie Peng. Bound states for fractional Schrödinger-Poisson system with critical exponent. Discrete and Continuous Dynamical Systems - S, 2021, 14 (6) : 1819-1835. doi: 10.3934/dcdss.2021038

[2]

Wenmeng Geng, Kai Tao. Lyapunov exponents of discrete quasi-periodic gevrey Schrödinger equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 2977-2996. doi: 10.3934/dcdsb.2020216

[3]

Xia Sun, Kaimin Teng. Positive bound states for fractional Schrödinger-Poisson system with critical exponent. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3735-3768. doi: 10.3934/cpaa.2020165

[4]

Jordi-Lluís Figueras, Thomas Ohlson Timoudas. Sharp $ \frac12 $-Hölder continuity of the Lyapunov exponent at the bottom of the spectrum for a class of Schrödinger cocycles. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4519-4531. doi: 10.3934/dcds.2020189

[5]

Wen Feng, Milena Stanislavova, Atanas Stefanov. On the spectral stability of ground states of semi-linear Schrödinger and Klein-Gordon equations with fractional dispersion. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1371-1385. doi: 10.3934/cpaa.2018067

[6]

Ji Shu. Random attractors for stochastic discrete Klein-Gordon-Schrödinger equations driven by fractional Brownian motions. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1587-1599. doi: 10.3934/dcdsb.2017077

[7]

Rajeshwari Majumdar, Phanuel Mariano, Hugo Panzo, Lowen Peng, Anthony Sisti. Lyapunov exponent and variance in the CLT for products of random matrices related to random Fibonacci sequences. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4779-4799. doi: 10.3934/dcdsb.2020126

[8]

Nguyen Dinh Cong, Roberta Fabbri. On the spectrum of the one-dimensional Schrödinger operator. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 541-554. doi: 10.3934/dcdsb.2008.9.541

[9]

Hassan Emamirad, Arnaud Rougirel. Feynman path formula for the time fractional Schrödinger equation. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3391-3400. doi: 10.3934/dcdss.2020246

[10]

Wolfgang Wagner. A random cloud model for the Schrödinger equation. Kinetic and Related Models, 2014, 7 (2) : 361-379. doi: 10.3934/krm.2014.7.361

[11]

Jean Bourgain. On random Schrödinger operators on $\mathbb Z^2$. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 1-15. doi: 10.3934/dcds.2002.8.1

[12]

Doan Thai Son. On analyticity for Lyapunov exponents of generic bounded linear random dynamical systems. Discrete and Continuous Dynamical Systems - B, 2017, 22 (8) : 3113-3126. doi: 10.3934/dcdsb.2017166

[13]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[14]

Xu Zhang, Shiwang Ma, Qilin Xie. Bound state solutions of Schrödinger-Poisson system with critical exponent. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 605-625. doi: 10.3934/dcds.2017025

[15]

Kaimin Teng, Xiumei He. Ground state solutions for fractional Schrödinger equations with critical Sobolev exponent. Communications on Pure and Applied Analysis, 2016, 15 (3) : 991-1008. doi: 10.3934/cpaa.2016.15.991

[16]

Hiroshi Isozaki, Hisashi Morioka. A Rellich type theorem for discrete Schrödinger operators. Inverse Problems and Imaging, 2014, 8 (2) : 475-489. doi: 10.3934/ipi.2014.8.475

[17]

Mostafa Abounouh, H. Al Moatassime, J. P. Chehab, S. Dumont, Olivier Goubet. Discrete Schrödinger equations and dissipative dynamical systems. Communications on Pure and Applied Analysis, 2008, 7 (2) : 211-227. doi: 10.3934/cpaa.2008.7.211

[18]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete and Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[19]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure and Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[20]

Zupei Shen, Zhiqing Han, Qinqin Zhang. Ground states of nonlinear Schrödinger equations with fractional Laplacians. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 2115-2125. doi: 10.3934/dcdss.2019136

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (220)
  • HTML views (145)
  • Cited by (1)

Other articles
by authors

[Back to Top]