[1]
|
A. Avila, On the spectrum and Lyapunov exponent of limit periodic Schrödinger operators, Comm. Math. Phys., 288 (2009), 907-918.
doi: 10.1007/s00220-008-0667-2.
|
[2]
|
A. Avila, Y. Last, M. Shamis and Q. Zhou, On the Abominable Properties of the Almost Mathieu Operator, in preparation.
|
[3]
|
A. Baraviera and P. Duarte, Approximating Lyapunov exponents and stationary measures, J Dyn Diff Equat, 31 (2019), 25-48.
doi: 10.1007/s10884-018-9724-5.
|
[4]
|
C. Bocker-Neto and M. Viana, Continuity of Lyapunov exponents for random two-dimensional matrices, Ergodic Theory Dynam. Systems, 37 (2017), 1413-1442.
doi: 10.1017/etds.2015.116.
|
[5]
|
W. Craig, Pure point spectrum for discrete almost periodic Schrödinger operators, Comm. Math. Phys., 88 (1983), 113-131.
doi: 10.1007/BF01206883.
|
[6]
|
W. Craig and B. Simon, Log Hölder continuity of the integrated density of states for stochastic Jacobi matrices, Comm. Math. Phys., 90 (1983), 207-218.
doi: 10.1007/BF01205503.
|
[7]
|
D. Damanik, Schrödinger operators with dynamically defined potentials, Ergodic Theory Dynam. Systems, 37 (2017), 1681-1764.
doi: 10.1017/etds.2015.120.
|
[8]
|
P. Duarte and S. Klein, Lyapunov Exponents of Linear Cocycles,, Continuity via large deviations. Atlantis Studies in Dynamical Systems, 3. Atlantis Press, Paris, 2016.
doi: 10.2991/978-94-6239-124-6.
|
[9]
|
____, Continuity of the Lyapunov Exponents of Linear Cocycles, Publicações Matemáticas, $31^\circ$ Colóquio Brasileiro de Matemática, IMPA, 2017, https://impa.br/wp-content/uploads/2017/08/31CBM_02.pdf
|
[10]
|
____, Large deviations for products of random two dimensional matrices, preprint, 2018.
|
[11]
|
H. Furstenberg and H. Kesten, Products of random matrices, Ann. Math. Statist., 31 (1960), 457-469.
doi: 10.1214/aoms/1177705909.
|
[12]
|
H. Furstenberg and Y. Kifer, Random matrix products and measures on projective spaces, Israel J. Math., 46 (1983), 12-32.
doi: 10.1007/BF02760620.
|
[13]
|
H. Furstenberg, Noncommuting random products, Trans. Amer. Math. Soc., 108 (1963), 377-428.
doi: 10.1090/S0002-9947-1963-0163345-0.
|
[14]
|
M. Goldstein and W. Schlag, Hölder continuity of the integrated density of states for quasi-periodic Schrödinger equations and averages of shifts of subharmonic functions, Ann. of Math., (2) 154 (2001), 155-203.
doi: 10.2307/3062114.
|
[15]
|
Y. Kifer, Perturbations of random matrix products, Z. Wahrsch. Verw. Gebiete, 61 (1982), 83-95.
doi: 10.1007/BF00537227.
|
[16]
|
H. Krüger and Z. Gan, Optimality of log Hölder continuity of the integrated density of states, Math. Nachr., 284 (2011), 1919-1923.
doi: 10.1002/mana.200910139.
|
[17]
|
É. Le Page, Régularité du plus grand exposant caractéristique des produits de matrices aléatoires indépendantes et applications, Ann. Inst. H. Poincaré Probab. Statist., 25 (1989), 109-142.
|
[18]
|
E. C. Malheiro and M. Viana, Lyapunov exponents of linear cocycles over Markov shifts, Stoch. Dyn., 15 (2015), 1550020, 27pp.
doi: 10.1142/S0219493715500203.
|
[19]
|
J. Pöschel, Examples of discrete Schrödinger operators with pure point spectrum, Comm. Math. Phys., 88 (1983), 447-463.
doi: 10.1007/BF01211953.
|
[20]
|
B. Simon and M. Taylor, Harmonic analysis on SL (2, R) and smoothness of the density of states in the one-dimensional Anderson model, Comm. Math. Phys., 101 (1985), 1-19.
doi: 10.1007/BF01212354.
|
[21]
|
N. J. A. Sloane and S. Plouffe, The Encyclopedia of Integer Sequences, Academic Press, Inc., San Diego, CA, 1995.
|
[22]
|
E. H. Y. Tall and M. Viana, Moduli of Continuity for Lyapunov Exponents of Random GL(2) Cocycles, preprint, 2018, http://w3.impa.br/~viana/out/holder.pdf.
|
[23]
|
T. Tao, Topics in Random Matrix Theory, Graduate Studies in Mathematics, vol. 132, American Mathematical Society, Providence, RI, 2012.
doi: 10.1090/gsm/132.
|
[24]
|
M. Viana, Lectures on Lyapunov Exponents, Cambridge Studies in Advanced Mathematics,
Cambridge University Press, 2014.
doi: 10.1017/CBO9781139976602.
|