-
Previous Article
Prescribed energy connecting orbits for gradient systems
- DCDS Home
- This Issue
-
Next Article
Regularity and weak comparison principles for double phase quasilinear elliptic equations
The Chern-Simons-Higgs and the Chern-Simons-Dirac equations in Fourier-Lebesgue spaces
Fakultät für Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany |
The Chern-Simons-Higgs and the Chern-Simons-Dirac systems in Lorenz gauge are locally well-posed in suitable Fourier-Lebesgue spaces $ \hat{H}^{s, r} $. Our aim is to minimize $ s = s(r) $ in the range $ 1<r \le 2 $. If $ r \to 1 $ we show that we almost reach the critical regularity dictated by scaling. In the classical case $ r = 2 $ the results are due to Huh and Oh. Crucial is the fact that the decisive quadratic nonlinearities fulfill a null condition.
References:
[1] |
N. Bourneveas, T. Candy and S. Machihara,
A note on the Chern-Simons-Dirac equations in the Coulomb gauge, Discr. Cont. Dyn. Syst., 34 (2014), 2693-2701.
doi: 10.3934/dcds.2014.34.2693. |
[2] |
Y. M. Cho, J. W. Kim and D. H. Park,
Fermionic vortex solutions in Chern-Simons electrodynamics, Phys. Rev. D, 45 (1992), 3802-3806.
doi: 10.1103/PhysRevD.45.3802. |
[3] |
P. d'Ancona, D. Foschi and S. Selberg,
Product estimates for wave-Sobolev spaces in 2+1 and 1+1 dimensions, Contemp. Math., 526 (2010), 125-150.
doi: 10.1090/conm/526/10379. |
[4] |
P. d'Ancona, D. Foschi and S. Selberg,
Null structure and almost optimal local regularity for the Dirac-Klein-Gordon system, J. Eur. Math. Soc., 9 (2007), 877-899.
doi: 10.4171/JEMS/100. |
[5] |
D. Foschi and S. Klainerman,
Bilinear space-time estimates for homogeneous wave equations, Ann. Sc. ENS. 4. serie, 33 (2000), 211-274.
doi: 10.1016/S0012-9593(00)00109-9. |
[6] |
V. Grigoryan and A. Nahmod,
Almost critical wee-posedmess for nonlinear wave equation with $Q_{\mu \nu}$ null forms in 2D, Math. Res. Letters, 21 (2014), 313-332.
doi: 10.4310/MRL.2014.v21.n2.a9. |
[7] |
V. Grigoryan and A. Tanguay, Improved well-poseness for the quadratic derivative nonlinear wave equation in 2D, Preprint, arXiv: 1308.1719. |
[8] |
A. Grünrock, An improved local well-posedness result for the modified KdV equation, Int. Math. Res. Not., (2004), 3287–3308.
doi: 10.1155/S1073792804140981. |
[9] |
A. Grünrock,
On the wave equation with quadratic nonlinearities in three space dimensions, Hyperbolic Diff. Equ., 8 (2011), 1-8.
doi: 10.1142/S0219891611002305. |
[10] |
A. Grünrock and L. Vega,
Local well-posedness for the modified KdV equation in almost critical $\hat{H}^r_s$ -spaces, Trans. Amer. Mat. Soc., 361 (2009), 5681-5694.
doi: 10.1090/S0002-9947-09-04611-X. |
[11] |
J. Hong, Y. Kim and P. Y. Pac,
Multivortex solutions of the abelian Chern-Simons-Higgs theory, Phys. Rev. Letters, 64 (1990), 2230-2233.
doi: 10.1103/PhysRevLett.64.2230. |
[12] |
H. Huh,
Cauchy problem for the Fermion field equation coupled with the Chern-Simons gauge, Lett. Math. Phys., 79 (2007), 75-94.
doi: 10.1007/s11005-006-0118-y. |
[13] |
H. Huh and S.-J. Oh,
Low regularity solutions to the Chern-Simons-Dirac and the Chern-Simons-Higgs equations in the Lorenz gauge, Comm. PDE, 41 (2016), 375-397.
doi: 10.1080/03605302.2015.1132730. |
[14] |
R. Jackiw and E. J. Weinberg,
Self-dual Chern-Simons vortices, Phys. Rev. Letters, 64 (1990), 2234-2237.
doi: 10.1103/PhysRevLett.64.2234. |
[15] |
S. Li and R. K. Bhaduri,
Planar solitons of the gauged Dirac equation, Phys. Rev. D, 43 (1991), 3573-3574.
|
[16] |
H. Pecher,
Low regularity solutions for Chern-Simons-Dirac systems in the temporal and Coulomb gauge, Electron. J. Differential Equations, 2016 (2016), 1-16.
|
[17] |
H. Pecher,
Global well-posedness in energy space for the Chern-Simons-Higgs system in temporal gauge, J. Hyperbolic Diff. Equ., 13 (2016), 331-351.
doi: 10.1142/S0219891616500107. |
[18] |
S. Selberg,
Bilinear Fourier restriction estimates related to the 2D wave equation, Adv. Diff. Equ., 16 (2011), 667-690.
|
[19] |
S. Selberg and A. Tesfahun,
Global well-posedness of the Chern-Simons-Higgs equations with finite energy, Discrete Cont. Dyn. Syst., 33 (2013), 2531-2546.
doi: 10.3934/dcds.2013.33.2531. |
[20] |
A. Vargas and L. Vega,
Global wellposedness for 1D non-linear Schrödinger equation for data with an infinite $L^2$-norm, J. Math. Pures Appl., 80 (2001), 1029-1044.
doi: 10.1016/S0021-7824(01)01224-7. |
show all references
References:
[1] |
N. Bourneveas, T. Candy and S. Machihara,
A note on the Chern-Simons-Dirac equations in the Coulomb gauge, Discr. Cont. Dyn. Syst., 34 (2014), 2693-2701.
doi: 10.3934/dcds.2014.34.2693. |
[2] |
Y. M. Cho, J. W. Kim and D. H. Park,
Fermionic vortex solutions in Chern-Simons electrodynamics, Phys. Rev. D, 45 (1992), 3802-3806.
doi: 10.1103/PhysRevD.45.3802. |
[3] |
P. d'Ancona, D. Foschi and S. Selberg,
Product estimates for wave-Sobolev spaces in 2+1 and 1+1 dimensions, Contemp. Math., 526 (2010), 125-150.
doi: 10.1090/conm/526/10379. |
[4] |
P. d'Ancona, D. Foschi and S. Selberg,
Null structure and almost optimal local regularity for the Dirac-Klein-Gordon system, J. Eur. Math. Soc., 9 (2007), 877-899.
doi: 10.4171/JEMS/100. |
[5] |
D. Foschi and S. Klainerman,
Bilinear space-time estimates for homogeneous wave equations, Ann. Sc. ENS. 4. serie, 33 (2000), 211-274.
doi: 10.1016/S0012-9593(00)00109-9. |
[6] |
V. Grigoryan and A. Nahmod,
Almost critical wee-posedmess for nonlinear wave equation with $Q_{\mu \nu}$ null forms in 2D, Math. Res. Letters, 21 (2014), 313-332.
doi: 10.4310/MRL.2014.v21.n2.a9. |
[7] |
V. Grigoryan and A. Tanguay, Improved well-poseness for the quadratic derivative nonlinear wave equation in 2D, Preprint, arXiv: 1308.1719. |
[8] |
A. Grünrock, An improved local well-posedness result for the modified KdV equation, Int. Math. Res. Not., (2004), 3287–3308.
doi: 10.1155/S1073792804140981. |
[9] |
A. Grünrock,
On the wave equation with quadratic nonlinearities in three space dimensions, Hyperbolic Diff. Equ., 8 (2011), 1-8.
doi: 10.1142/S0219891611002305. |
[10] |
A. Grünrock and L. Vega,
Local well-posedness for the modified KdV equation in almost critical $\hat{H}^r_s$ -spaces, Trans. Amer. Mat. Soc., 361 (2009), 5681-5694.
doi: 10.1090/S0002-9947-09-04611-X. |
[11] |
J. Hong, Y. Kim and P. Y. Pac,
Multivortex solutions of the abelian Chern-Simons-Higgs theory, Phys. Rev. Letters, 64 (1990), 2230-2233.
doi: 10.1103/PhysRevLett.64.2230. |
[12] |
H. Huh,
Cauchy problem for the Fermion field equation coupled with the Chern-Simons gauge, Lett. Math. Phys., 79 (2007), 75-94.
doi: 10.1007/s11005-006-0118-y. |
[13] |
H. Huh and S.-J. Oh,
Low regularity solutions to the Chern-Simons-Dirac and the Chern-Simons-Higgs equations in the Lorenz gauge, Comm. PDE, 41 (2016), 375-397.
doi: 10.1080/03605302.2015.1132730. |
[14] |
R. Jackiw and E. J. Weinberg,
Self-dual Chern-Simons vortices, Phys. Rev. Letters, 64 (1990), 2234-2237.
doi: 10.1103/PhysRevLett.64.2234. |
[15] |
S. Li and R. K. Bhaduri,
Planar solitons of the gauged Dirac equation, Phys. Rev. D, 43 (1991), 3573-3574.
|
[16] |
H. Pecher,
Low regularity solutions for Chern-Simons-Dirac systems in the temporal and Coulomb gauge, Electron. J. Differential Equations, 2016 (2016), 1-16.
|
[17] |
H. Pecher,
Global well-posedness in energy space for the Chern-Simons-Higgs system in temporal gauge, J. Hyperbolic Diff. Equ., 13 (2016), 331-351.
doi: 10.1142/S0219891616500107. |
[18] |
S. Selberg,
Bilinear Fourier restriction estimates related to the 2D wave equation, Adv. Diff. Equ., 16 (2011), 667-690.
|
[19] |
S. Selberg and A. Tesfahun,
Global well-posedness of the Chern-Simons-Higgs equations with finite energy, Discrete Cont. Dyn. Syst., 33 (2013), 2531-2546.
doi: 10.3934/dcds.2013.33.2531. |
[20] |
A. Vargas and L. Vega,
Global wellposedness for 1D non-linear Schrödinger equation for data with an infinite $L^2$-norm, J. Math. Pures Appl., 80 (2001), 1029-1044.
doi: 10.1016/S0021-7824(01)01224-7. |
[1] |
Jianjun Yuan. On the well-posedness of Maxwell-Chern-Simons-Higgs system in the Lorenz gauge. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2389-2403. doi: 10.3934/dcds.2014.34.2389 |
[2] |
Sigmund Selberg, Achenef Tesfahun. Global well-posedness of the Chern-Simons-Higgs equations with finite energy. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2531-2546. doi: 10.3934/dcds.2013.33.2531 |
[3] |
Nikolaos Bournaveas, Timothy Candy, Shuji Machihara. A note on the Chern-Simons-Dirac equations in the Coulomb gauge. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2693-2701. doi: 10.3934/dcds.2014.34.2693 |
[4] |
Hartmut Pecher. Local solutions with infinite energy of the Maxwell-Chern-Simons-Higgs system in Lorenz gauge. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 2193-2204. doi: 10.3934/dcds.2016.36.2193 |
[5] |
Hyungjin Huh. Towards the Chern-Simons-Higgs equation with finite energy. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1145-1159. doi: 10.3934/dcds.2011.30.1145 |
[6] |
Hartmut Pecher. Almost optimal local well-posedness for the Maxwell-Klein-Gordon system with data in Fourier-Lebesgue spaces. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3303-3321. doi: 10.3934/cpaa.2020146 |
[7] |
Andreia Chapouto. A remark on the well-posedness of the modified KdV equation in the Fourier-Lebesgue spaces. Discrete and Continuous Dynamical Systems, 2021, 41 (8) : 3915-3950. doi: 10.3934/dcds.2021022 |
[8] |
Hartmut Pecher. Local well-posedness for the Maxwell-Dirac system in temporal gauge. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 3065-3076. doi: 10.3934/dcds.2022008 |
[9] |
Jeongho Kim, Bora Moon. Hydrodynamic limits of the nonlinear Schrödinger equation with the Chern-Simons gauge fields. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 2541-2561. doi: 10.3934/dcds.2021202 |
[10] |
Youngae Lee. Topological solutions in the Maxwell-Chern-Simons model with anomalous magnetic moment. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1293-1314. doi: 10.3934/dcds.2018053 |
[11] |
Youngae Lee. Non-topological solutions in a generalized Chern-Simons model on torus. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1315-1330. doi: 10.3934/cpaa.2017064 |
[12] |
Youyan Wan, Jinggang Tan. The existence of nontrivial solutions to Chern-Simons-Schrödinger systems. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2765-2786. doi: 10.3934/dcds.2017119 |
[13] |
Lingyu Li, Jianfu Yang, Jinge Yang. Solutions to Chern-Simons-Schrödinger systems with external potential. Discrete and Continuous Dynamical Systems - S, 2021, 14 (6) : 1967-1981. doi: 10.3934/dcdss.2021008 |
[14] |
Nikolaos Bournaveas. Local well-posedness for a nonlinear dirac equation in spaces of almost critical dimension. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 605-616. doi: 10.3934/dcds.2008.20.605 |
[15] |
Kwangseok Choe, Jongmin Han, Chang-Shou Lin. Bubbling solutions for the Chern-Simons gauged $O(3)$ sigma model in $\mathbb{R}^2$. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2703-2728. doi: 10.3934/dcds.2014.34.2703 |
[16] |
Jianjun Yuan. Global existence and scattering of equivariant defocusing Chern-Simons-Schrödinger system. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5541-5570. doi: 10.3934/dcds.2020237 |
[17] |
Jeongho Kim, Bora Moon. Finite difference methods for the one-dimensional Chern-Simons gauged models. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022003 |
[18] |
Jincai Kang, Chunlei Tang. Existence of nontrivial solutions to Chern-Simons-Schrödinger system with indefinite potential. Discrete and Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021016 |
[19] |
Hsin-Yuan Huang. Vortex Condensation in General U(1)×U(1) Abelian Chern-Simons Model on a flat torus. Discrete and Continuous Dynamical Systems - B, 2022, 27 (8) : 4415-4428. doi: 10.3934/dcdsb.2021234 |
[20] |
Hartmut Pecher. Local well-posedness for the nonlinear Dirac equation in two space dimensions. Communications on Pure and Applied Analysis, 2014, 13 (2) : 673-685. doi: 10.3934/cpaa.2014.13.673 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]