\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Prescribed energy connecting orbits for gradient systems

  • * Corresponding author: Andres Zuniga

    * Corresponding author: Andres Zuniga

The third author is supported by a public grant overseen by the French National Research Agency (ANR) as part of the Investissement d'Avenir project, reference ANR-10-LABX-0098, LabEx SMP, and also supported by the project EFI ANR-17-CE40-0030 of the ANR.

Abstract / Introduction Full Text(HTML) Figure(2) Related Papers Cited by
  • We are concerned with conservative systems $ \ddot q = \nabla V(q) $, $ q\in{\mathbb R}^{N} $ for a general class of potentials $ V\in C^1({\mathbb R}^N) $. Assuming that a given sublevel set $ \{V\leq c\} $ splits in the disjoint union of two closed subsets $ \mathcal{V}^{c}_{-} $ and $ \mathcal{V}^{c}_{+} $, for some $ c\in{\mathbb R} $, we establish the existence of bounded solutions $ q_{c} $ to the above system with energy equal to $ -c $ whose trajectories connect $ \mathcal{V}^{c}_{-} $ and $ \mathcal{V}^{c}_{+} $. The solutions are obtained through an energy constrained variational method, whenever mild coerciveness properties are present in the problem. The connecting orbits are classified into brake, heteroclinic or homoclinic type, depending on the behavior of $ \nabla V $ on $ \partial \mathcal{V}^{c}_{\pm} $. Next, we illustrate applications of the existence result to double-well potentials $ V $, and for potentials associated to systems of duffing type and of multiple-pendulum type. In each of the above cases we prove some convergence results of the family of solutions $ (q_{c}) $.

    Mathematics Subject Classification: Primary: 34C25, 34C37, 49J40, 49J45.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Possible configurations in Duffing like systems

    Figure 2.  Possible configurations in pendulum like systems

  • [1] F. Alessio, Stationary layered solutions for a system of Allen-Cahn type equations, Indiana Univ. Math. J., 62 (2013), 1535-1564.  doi: 10.1512/iumj.2013.62.5108.
    [2] F. AlessioM. L. Bertotti and P. Montecchiari, Multibump solutions to possibly degenerate equilibria for almost periodic Lagrangian systems, Z. Angew. Math. Phys., 50 (1999), 860-891.  doi: 10.1007/s000330050184.
    [3] F. Alessio and P. Montecchiari, Entire solutions in $\mathbb{R}^{2}$ for a class of Allen-Cahn equations, ESAIM Control Optim. Calc. Var., 11 (2005), 633-672.  doi: 10.1051/cocv:2005023.
    [4] _____, Multiplicity of entire solutions for a class of almost periodic Allen-Cahn type equations, Adv. Nonlinear Stud., 5 (2005), 515-549. doi: 10.1515/ans-2005-0404.
    [5] _____, Brake orbits type solutions to some class of semilinear elliptic equations, Calc. Var. Partial Differential Equations, 30 (2007), 51-83. doi: 10.1007/s00526-006-0078-1.
    [6] _____, An energy constrained method for the existence of layered type solutions of NLS equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 725-749. doi: 10.1016/j.anihpc.2013.07.003.
    [7] _____, Brake orbit solutions for semilinear elliptic systems with asymmetric double well potential, J. Fixed Point Theory Appl., 19 (2017), 691-717. doi: 10.1007/s11784-016-0370-4.
    [8] N. D. Alikakos and G. Fusco, On the connection problem for potentials with several global minima, Indiana Univ. Math. J., 57 (2008), 1871-1906.  doi: 10.1512/iumj.2008.57.3181.
    [9] A. AmbrosettiV. Benci and Y. Long, A note on the existence of multiple brake orbits, Nonlinear Anal., 21 (1993), 643-649.  doi: 10.1016/0362-546X(93)90061-V.
    [10] A. Ambrosetti and M.L. Bertotti, Homoclinics for second order conservative systems, in Partial Differential Equations and Related Subjects (Trento, 1990), Pitman Res. Notes in Math. Ser., 269 (1992), 21–37.
    [11] P. Antonopoulos and P. Smyrnelis, On minimizers of the Hamiltonian system $u'' = \nabla W(u)$ and on the existence of heteroclinic, homoclinic and periodic orbits, Indiana Univ. Math. J., 65 (2016), 1503-1524.  doi: 10.1512/iumj.2016.65.5879.
    [12] V. Benci, Closed geodesics for the Jacobi metric and periodic solutions of prescribed energy of natural Hamiltonian systems, Ann. Inst. H. Poincaré Anal. Non Linéare, 1 (1984), 401-412.  doi: 10.1016/S0294-1449(16)30420-6.
    [13] V. Benci and F. Giannoni, A new proof of the existence of a brake orbit, in Advanced Topics in the Theory of Dynamical Systems (Trento 1987), Notes Rep. Math. Sci. Eng., 6, Academic Press, (1989), 37–49.
    [14] M. L. Bertotti and P. Montecchiari, Connecting orbits for some classes of almost periodic Lagrangian systems, J. Differential Equations, 145 (1998), 453-468.  doi: 10.1006/jdeq.1998.3415.
    [15] S. Bolotin and V. V. Kozlov, Librations with many degrees of freedom (Russian), Prikl. Mat. Mekh., 42 (1978), 245-250. 
    [16] J. ByeonP. Montecchiari and P. H. Rabinowitz, A double well potential system, Anal. PDE, 9 (2016), 1737-1772.  doi: 10.2140/apde.2016.9.1737.
    [17] V. Coti Zelati and E. Serra, Multiple brake orbits for some classes of singular Hamiltonian systems, Nonlinear Anal., 20 (1993), 1001-1012.  doi: 10.1016/0362-546X(93)90090-F.
    [18] G. FuscoG. F. Gronchi and M. Novaga, On the existence of connecting orbits for critical values of the energy, J. Differential Equations, 263 (2017), 8848-8872.  doi: 10.1016/j.jde.2017.08.067.
    [19] ______, On the existence of heteroclinic connections, São Paulo J. Math. Sci., 12 (2018), 68-81. doi: 10.1007/s40863-017-0080-x.
    [20] R. GiambòF. Giannoni and P. Piccione, Orthogonal geodesic chords, brake orbits and homoclinic orbits in Riemannian manifolds, Adv. Differential Equations, 10 (2005), 931-960. 
    [21] ______, Multiple brake orbits and homoclinics in Riemannian manifolds, Arch. Ration. Mech. Anal., 200 (2011), 691-724. doi: 10.1007/s00205-010-0371-1.
    [22] E. W. C. van Groesen, Analytical mini-max methods for Hamiltonian brake orbits of prescribed energy, J. Math. Anal. Appl., 132 (1988), 1-12.  doi: 10.1016/0022-247X(88)90039-X.
    [23] N. Katzourakis, On the loss of compactness in the heteroclinic connection problem, Proc. Roy. Soc. Edinburgh Sect. A, 146 (2016), 595-608.  doi: 10.1017/S0308210515000700.
    [24] C. Li, The study of minimal period estimates for brake orbits of autonomous subquadratic Hamiltonian systems, Acta Math. Sin. (Engl. Ser.), 31 (2015), 1645-1658.  doi: 10.1007/s10114-015-4421-3.
    [25] Y. LongD. Zhang and C. Zhu, Multiple brake orbits in bounded convex symmetric domains, Adv. Math., 203 (2006), 568-635.  doi: 10.1016/j.aim.2005.05.005.
    [26] A. Monteil and H. Santambrogio, Metric methods for heteroclinic connections, Math. Methods Appl. Sci., 41 (2018), 1019-1024.  doi: 10.1002/mma.4072.
    [27] P. H. Rabinowitz and K. Tanaka, Some results on connecting orbits for a class of Hamiltonian systems, Math. Z., 206 (1991), 473-479.  doi: 10.1007/BF02571356.
    [28] P. H. Rabinowitz, Homoclinic and heteroclinic orbits for a class of Hamiltonian systems, Calc. Var. Partial Differential Equations, 1 (1993), 1-36.  doi: 10.1007/BF02163262.
    [29] ______, On a theorem of Strobel, Calc. Var. Partial Differential Equations, 12 (2001), 399-415. doi: 10.1007/PL00009919.
    [30] H. Seifert, Periodische bewegungen mechanischer systeme, (German) [Periodic movements of mechanical systems], Math. Z., 51 (1948), 197-216.  doi: 10.1007/BF01291002.
    [31] P. Sternberg and A. Zuniga, On the heteroclinic connection problem for multi-well potentials with several global minima, J. Differential Equations, 261 (2016), 3987-4007.  doi: 10.1016/j.jde.2016.06.010.
    [32] A. Weinstein, Periodic orbits for convex Hamiltonian systems, Ann. of Math.(2), 108 (1978), 507-518.  doi: 10.2307/1971185.
    [33] A. Zuniga, Geometric Problems in the Calculus of Variations, Ph.D thesis, Indiana University in Bloomington, 2018.
  • 加载中

Figures(2)

SHARE

Article Metrics

HTML views(2401) PDF downloads(290) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return