September  2019, 39(9): 4929-4943. doi: 10.3934/dcds.2019201

Asymptotic analysis for a very fast diffusion equation arising from the 1D quantization problem

ETH Zürich, Rämistrasse 101, 8092, Zürich, Switzerland

Received  February 2016 Published  May 2019

In this paper we study the asymptotic behavior of a very fast diffusion PDE in 1D with periodic boundary conditions. This equation is motivated by the gradient flow approach to the problem of quantization of measures introduced in [3]. We prove exponential convergence to equilibrium under minimal assumptions on the data, and we also provide sufficient conditions for $ W_2 $-stability of solutions.

Citation: Mikaela Iacobelli. Asymptotic analysis for a very fast diffusion equation arising from the 1D quantization problem. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 4929-4943. doi: 10.3934/dcds.2019201
References:
[1]

L. Ambrosio, Transport equation and Cauchy problem for non-smooth vector fields, in Calculus of variations and nonlinear partial differential equations, 1–41, Lecture Notes in Math., 1927, Springer, Berlin, 2008. doi: 10.1007/978-3-540-75914-0_1.  Google Scholar

[2]

L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2$^{nd}$ edition, Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2008.  Google Scholar

[3]

E. CagliotiF. Golse and M. Iacobelli, A gradient flow approach to quantization of measures, Math. Models Methods Appl. Sci., 25 (2015), 1845-1885.  doi: 10.1142/S0218202515500475.  Google Scholar

[4]

E. CagliotiF. Golse and M. Iacobelli, Quantization of measures and gradient flows: A perturbative approach in the $2$ dimensional case, Ann. Inst. N. Poincaré Anal. Non Linéaire, 35 (2018), 1531-1555.  doi: 10.1016/j.anihpc.2017.12.003.  Google Scholar

[5]

J. A. Carrillo and D. Slepcev, Example of a displacement convex functional of first order, Calc. Var. Partial Differential Equations, 36 (2009), 547-564.  doi: 10.1007/s00526-009-0243-4.  Google Scholar

[6]

J. R. EstebanA. Rodríguez and J. L. Vázquez, A nonlinear heat equation with singular diffusivity, Comm. Partial Differential Equations, 13 (1988), 985-1039.  doi: 10.1080/03605308808820566.  Google Scholar

[7]

S. Graf and H. Luschgy, Foundations of Quantization for Probability Distributions, Lecture Notes in Math. 1730, Springer-Verlag, Berlin Heidelberg, 2000. doi: 10.1007/BFb0103945.  Google Scholar

[8]

M. IacobelliF. S. Patacchini and F. Santambrogio, Weighted Ultrafast Diffusion Equations: From Well-Posedness to Long-Time Behaviour, Arch. Ration. Mech. Anal., 232 (2019), 1165-1206.  doi: 10.1007/s00205-018-01341-w.  Google Scholar

[9]

F. Otto, The geometry of dissipative evolution equations: The porous medium equation, Comm. Partial Differential Equations, 26 (2001), 101-174.  doi: 10.1081/PDE-100002243.  Google Scholar

[10]

F. Otto and M. Westdickenberg, Eulerian calculus for the contraction in the Wasserstein distance,, SIAM J. Math. Anal., 37 (2005), 1227-1255.  doi: 10.1137/050622420.  Google Scholar

[11]

A. Rodríguez and J. L. Vázquez, A well-posed problem in singular Fickian diffusion, Arch. Rational Mech. Anal., 110 (1990), 141-163.  doi: 10.1007/BF00873496.  Google Scholar

[12]

F. Santambrogio and X.-J. Wang, Convexity of the support of the displacement interpolation: Counterexamples, Appl. Math. Lett., 58 (2016), 152-158.  doi: 10.1016/j.aml.2016.02.016.  Google Scholar

[13]

J. L. Vázquez, Nonexistence of solutions for nonlinear heat equations of fast-diffusion type, J. Math. Pures. Appl., 71 (1992), 503-526.   Google Scholar

[14]

J. L. Vázquez, Failure of the strong maximum principle in nonlinear diffusion. Existence of needles, Comm. Partial Differential Equations, 30 (2005), 1263-1303.  doi: 10.1080/10623320500258759.  Google Scholar

[15] J. L. Vázquez, Smoothing and Decay Estimates for Nonlinear Diffusion Equations, Oxford Lecture Series in Mathematics and its Applications, 33. Oxford University Press, Oxford, 2006.  doi: 10.1093/acprof:oso/9780199202973.001.0001.  Google Scholar
[16] J. L. Vázquez, The Porous Medium Equation. Mathematical Theory,, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford, 2007.   Google Scholar
[17]

C. Villani, Topics in Optimal Transportation, Graduate Studies in Mathematics 58, American Math. Soc., Providence RI, 2003. doi: 10.1007/b12016.  Google Scholar

show all references

References:
[1]

L. Ambrosio, Transport equation and Cauchy problem for non-smooth vector fields, in Calculus of variations and nonlinear partial differential equations, 1–41, Lecture Notes in Math., 1927, Springer, Berlin, 2008. doi: 10.1007/978-3-540-75914-0_1.  Google Scholar

[2]

L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2$^{nd}$ edition, Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2008.  Google Scholar

[3]

E. CagliotiF. Golse and M. Iacobelli, A gradient flow approach to quantization of measures, Math. Models Methods Appl. Sci., 25 (2015), 1845-1885.  doi: 10.1142/S0218202515500475.  Google Scholar

[4]

E. CagliotiF. Golse and M. Iacobelli, Quantization of measures and gradient flows: A perturbative approach in the $2$ dimensional case, Ann. Inst. N. Poincaré Anal. Non Linéaire, 35 (2018), 1531-1555.  doi: 10.1016/j.anihpc.2017.12.003.  Google Scholar

[5]

J. A. Carrillo and D. Slepcev, Example of a displacement convex functional of first order, Calc. Var. Partial Differential Equations, 36 (2009), 547-564.  doi: 10.1007/s00526-009-0243-4.  Google Scholar

[6]

J. R. EstebanA. Rodríguez and J. L. Vázquez, A nonlinear heat equation with singular diffusivity, Comm. Partial Differential Equations, 13 (1988), 985-1039.  doi: 10.1080/03605308808820566.  Google Scholar

[7]

S. Graf and H. Luschgy, Foundations of Quantization for Probability Distributions, Lecture Notes in Math. 1730, Springer-Verlag, Berlin Heidelberg, 2000. doi: 10.1007/BFb0103945.  Google Scholar

[8]

M. IacobelliF. S. Patacchini and F. Santambrogio, Weighted Ultrafast Diffusion Equations: From Well-Posedness to Long-Time Behaviour, Arch. Ration. Mech. Anal., 232 (2019), 1165-1206.  doi: 10.1007/s00205-018-01341-w.  Google Scholar

[9]

F. Otto, The geometry of dissipative evolution equations: The porous medium equation, Comm. Partial Differential Equations, 26 (2001), 101-174.  doi: 10.1081/PDE-100002243.  Google Scholar

[10]

F. Otto and M. Westdickenberg, Eulerian calculus for the contraction in the Wasserstein distance,, SIAM J. Math. Anal., 37 (2005), 1227-1255.  doi: 10.1137/050622420.  Google Scholar

[11]

A. Rodríguez and J. L. Vázquez, A well-posed problem in singular Fickian diffusion, Arch. Rational Mech. Anal., 110 (1990), 141-163.  doi: 10.1007/BF00873496.  Google Scholar

[12]

F. Santambrogio and X.-J. Wang, Convexity of the support of the displacement interpolation: Counterexamples, Appl. Math. Lett., 58 (2016), 152-158.  doi: 10.1016/j.aml.2016.02.016.  Google Scholar

[13]

J. L. Vázquez, Nonexistence of solutions for nonlinear heat equations of fast-diffusion type, J. Math. Pures. Appl., 71 (1992), 503-526.   Google Scholar

[14]

J. L. Vázquez, Failure of the strong maximum principle in nonlinear diffusion. Existence of needles, Comm. Partial Differential Equations, 30 (2005), 1263-1303.  doi: 10.1080/10623320500258759.  Google Scholar

[15] J. L. Vázquez, Smoothing and Decay Estimates for Nonlinear Diffusion Equations, Oxford Lecture Series in Mathematics and its Applications, 33. Oxford University Press, Oxford, 2006.  doi: 10.1093/acprof:oso/9780199202973.001.0001.  Google Scholar
[16] J. L. Vázquez, The Porous Medium Equation. Mathematical Theory,, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford, 2007.   Google Scholar
[17]

C. Villani, Topics in Optimal Transportation, Graduate Studies in Mathematics 58, American Math. Soc., Providence RI, 2003. doi: 10.1007/b12016.  Google Scholar

[1]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[2]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[3]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[4]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[5]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[6]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[7]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

[8]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[9]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[10]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[11]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[12]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[13]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[14]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[15]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[16]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[17]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[18]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[19]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[20]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (172)
  • HTML views (229)
  • Cited by (0)

Other articles
by authors

[Back to Top]