September  2019, 39(9): 5105-5124. doi: 10.3934/dcds.2019207

On absolutely continuous curves of probabilities on the line

WVU, Morgantown, WV 26506, USA

Received  June 2018 Revised  March 2019 Published  May 2019

In recent collaborative work we studied existence and uniqueness of a Lagrangian description for absolutely continuous curves in spaces of Borel probabilities on the real line with finite moments of given order. Of course, a measurable velocity driving the evolution in Eulerian coordinates is necessary to define the Eulerian and Lagrangian descriptions of fluid flow; here we prove that in this case it is also sufficient for a Lagrangian description. More precisely, we argue that the existence of the integrable velocity along an absolutely continuous curve in the set of Borel probabilities on the line is enough to produce a canonical Lagrangian description for the curve; this is given by the family of optimal maps between the uniform distribution on the unit interval and the measures on the curve. Moreover, we identify a necessary and sufficient condition on said family of optimal maps which ensures that the measurable velocity along the curve exists.

Citation: Adrian Tudorascu. On absolutely continuous curves of probabilities on the line. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5105-5124. doi: 10.3934/dcds.2019207
References:
[1]

L. Ambrosio, Transport equation and Cauchy problem for $BV$ vector fields, Invent. Math., 158 (2004), 227-260. doi: 10.1007/s00222-004-0367-2. Google Scholar

[2]

L. Ambrosio and W. Gangbo., Hamiltonian ODE in the Wasserstein spaces of probability measures, Comm. Pure Appl. Math., 61 (2008), 18-53. doi: 10.1002/cpa.20188. Google Scholar

[3]

L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and the Wasserstein Spaces of Probability Measures, Lectures in Mathematics, ETH Zurich, Birkhäuser, 2005. Google Scholar

[4]

M. Amsaad and A. Tudorascu, On the Lagrangian description of absolutely continuous curves in the Wasserstein space on the line; well-posedness for the Continuity Equation, Indiana U. Math. J., 64 (2015), 1835-1877. doi: 10.1512/iumj.2015.64.5727. Google Scholar

[5]

Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions, Comm. Pure Appl. Math., 44 (1991), 375-417. doi: 10.1002/cpa.3160440402. Google Scholar

[6]

H. Brezis, Convergence in $\mathcal{D}'$ and $L^1$ under strict convexity, in Boundary Value Problems for Partial Differential Equations and Applications, dedicated to E. Magenes, (C. Baiocchi et J.L. Lions ed.), Masson, 29 (1993), 43–52. Google Scholar

[7]

J. A. CarrilloM. Di FrancescoA. FigalliT. Laurent and D. Slepčev, Global-in-time weak measure solutions, finite-time aggregation and confinement for nonlocal interaction equations, Duke Math. J., 156 (2011), 229-271. doi: 10.1215/00127094-2010-211. Google Scholar

[8]

G. Crippa, The Flow Associated to Weakly Differentiable Vector Fields, Edizioni della Normale, Pisa, 2009. Google Scholar

[9]

M. Fréchet, Sur la distance de deux lois de probabilite, Comptes Rendus Acad. Sci., 244 (1957), 689-692. Google Scholar

[10]

W. GangboT. Nguyen and A. Tudorascu, Euler-Poisson systems as action minimizing paths in the Wasserstein space, Arch. Rational Mech. Anal., 192 (2009), 419-452. doi: 10.1007/s00205-008-0148-y. Google Scholar

[11]

W. GangboT. Nguyen and A. Tudorascu, Hamilton-Jacobi equations in the Wasserstein space, Meth. Appl. Anal., 15 (2008), 155-183. doi: 10.4310/MAA.2008.v15.n2.a4. Google Scholar

[12]

U. GianazzaG. Savaré and G. Toscani, The Wasserstein gradient flow of the Fisher information and the quantum drift-diffusion equation, Arch. Ration. Mech. Anal., 194 (2009), 133-220. doi: 10.1007/s00205-008-0186-5. Google Scholar

[13]

G. Loeper, On the regularity of the polar factorization of time dependent maps, Calc. Var. PDE, 22 (2005), 343-374. doi: 10.1007/s00526-004-0280-y. Google Scholar

[14]

T. Nguyen and A. Tudorascu, Pressureless Euler/Euler-Poisson systems via adhesion dynamics and scalar conservation laws, SIAM J. Math. Anal., 40 (2008), 754-775. doi: 10.1137/070704459. Google Scholar

[15]

J. V. Ryff, Orbits of $L^1$ functions under doubly stochastic transformations, Trans. AMS, 117 (1965), 92-100. doi: 10.2307/1994198. Google Scholar

[16]

A. Tudorascu, On the velocities of flows consisting of cyclically monotone maps, Indiana U. Math. J., 59 (2010), 929-956. doi: 10.1512/iumj.2010.59.3955. Google Scholar

[17]

C. Villani, Topics in Optimal Transportation, Graduate Studies in Mathematics, 58, American Mathematical Society, 2003. doi: 10.1007/b12016. Google Scholar

[18]

A. Visintin, Strong convergence results related to strict convexity, Commun. Part. Diff. Eq., 9 (1984), 439-466. doi: 10.1080/03605308408820337. Google Scholar

show all references

References:
[1]

L. Ambrosio, Transport equation and Cauchy problem for $BV$ vector fields, Invent. Math., 158 (2004), 227-260. doi: 10.1007/s00222-004-0367-2. Google Scholar

[2]

L. Ambrosio and W. Gangbo., Hamiltonian ODE in the Wasserstein spaces of probability measures, Comm. Pure Appl. Math., 61 (2008), 18-53. doi: 10.1002/cpa.20188. Google Scholar

[3]

L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and the Wasserstein Spaces of Probability Measures, Lectures in Mathematics, ETH Zurich, Birkhäuser, 2005. Google Scholar

[4]

M. Amsaad and A. Tudorascu, On the Lagrangian description of absolutely continuous curves in the Wasserstein space on the line; well-posedness for the Continuity Equation, Indiana U. Math. J., 64 (2015), 1835-1877. doi: 10.1512/iumj.2015.64.5727. Google Scholar

[5]

Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions, Comm. Pure Appl. Math., 44 (1991), 375-417. doi: 10.1002/cpa.3160440402. Google Scholar

[6]

H. Brezis, Convergence in $\mathcal{D}'$ and $L^1$ under strict convexity, in Boundary Value Problems for Partial Differential Equations and Applications, dedicated to E. Magenes, (C. Baiocchi et J.L. Lions ed.), Masson, 29 (1993), 43–52. Google Scholar

[7]

J. A. CarrilloM. Di FrancescoA. FigalliT. Laurent and D. Slepčev, Global-in-time weak measure solutions, finite-time aggregation and confinement for nonlocal interaction equations, Duke Math. J., 156 (2011), 229-271. doi: 10.1215/00127094-2010-211. Google Scholar

[8]

G. Crippa, The Flow Associated to Weakly Differentiable Vector Fields, Edizioni della Normale, Pisa, 2009. Google Scholar

[9]

M. Fréchet, Sur la distance de deux lois de probabilite, Comptes Rendus Acad. Sci., 244 (1957), 689-692. Google Scholar

[10]

W. GangboT. Nguyen and A. Tudorascu, Euler-Poisson systems as action minimizing paths in the Wasserstein space, Arch. Rational Mech. Anal., 192 (2009), 419-452. doi: 10.1007/s00205-008-0148-y. Google Scholar

[11]

W. GangboT. Nguyen and A. Tudorascu, Hamilton-Jacobi equations in the Wasserstein space, Meth. Appl. Anal., 15 (2008), 155-183. doi: 10.4310/MAA.2008.v15.n2.a4. Google Scholar

[12]

U. GianazzaG. Savaré and G. Toscani, The Wasserstein gradient flow of the Fisher information and the quantum drift-diffusion equation, Arch. Ration. Mech. Anal., 194 (2009), 133-220. doi: 10.1007/s00205-008-0186-5. Google Scholar

[13]

G. Loeper, On the regularity of the polar factorization of time dependent maps, Calc. Var. PDE, 22 (2005), 343-374. doi: 10.1007/s00526-004-0280-y. Google Scholar

[14]

T. Nguyen and A. Tudorascu, Pressureless Euler/Euler-Poisson systems via adhesion dynamics and scalar conservation laws, SIAM J. Math. Anal., 40 (2008), 754-775. doi: 10.1137/070704459. Google Scholar

[15]

J. V. Ryff, Orbits of $L^1$ functions under doubly stochastic transformations, Trans. AMS, 117 (1965), 92-100. doi: 10.2307/1994198. Google Scholar

[16]

A. Tudorascu, On the velocities of flows consisting of cyclically monotone maps, Indiana U. Math. J., 59 (2010), 929-956. doi: 10.1512/iumj.2010.59.3955. Google Scholar

[17]

C. Villani, Topics in Optimal Transportation, Graduate Studies in Mathematics, 58, American Mathematical Society, 2003. doi: 10.1007/b12016. Google Scholar

[18]

A. Visintin, Strong convergence results related to strict convexity, Commun. Part. Diff. Eq., 9 (1984), 439-466. doi: 10.1080/03605308408820337. Google Scholar

[1]

Helge Dietert, Josephine Evans, Thomas Holding. Contraction in the Wasserstein metric for the kinetic Fokker-Planck equation on the torus. Kinetic & Related Models, 2018, 11 (6) : 1427-1441. doi: 10.3934/krm.2018056

[2]

Giuseppe Savaré. Self-improvement of the Bakry-Émery condition and Wasserstein contraction of the heat flow in $RCD (K, \infty)$ metric measure spaces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1641-1661. doi: 10.3934/dcds.2014.34.1641

[3]

Vianney Perchet, Marc Quincampoix. A differential game on Wasserstein space. Application to weak approachability with partial monitoring. Journal of Dynamics & Games, 2019, 6 (1) : 65-85. doi: 10.3934/jdg.2019005

[4]

Jonathan Zinsl. The gradient flow of a generalized Fisher information functional with respect to modified Wasserstein distances. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 919-933. doi: 10.3934/dcdss.2017047

[5]

Fausto Cavalli, Giovanni Naldi. A Wasserstein approach to the numerical solution of the one-dimensional Cahn-Hilliard equation. Kinetic & Related Models, 2010, 3 (1) : 123-142. doi: 10.3934/krm.2010.3.123

[6]

Karoline Disser, Matthias Liero. On gradient structures for Markov chains and the passage to Wasserstein gradient flows. Networks & Heterogeneous Media, 2015, 10 (2) : 233-253. doi: 10.3934/nhm.2015.10.233

[7]

Anne-Sophie de Suzzoni. Continuity of the flow of the Benjamin-Bona-Mahony equation on probability measures. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2905-2920. doi: 10.3934/dcds.2015.35.2905

[8]

Kerem Uǧurlu. Continuity of cost functional and optimal feedback controls for the stochastic Navier Stokes equation in 2D. Communications on Pure & Applied Analysis, 2017, 16 (1) : 189-208. doi: 10.3934/cpaa.2017009

[9]

Yuming Zhang. On continuity equations in space-time domains. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 4837-4873. doi: 10.3934/dcds.2018212

[10]

Qinglan Xia. An application of optimal transport paths to urban transport networks. Conference Publications, 2005, 2005 (Special) : 904-910. doi: 10.3934/proc.2005.2005.904

[11]

Wilfrid Gangbo, Andrzej Świech. Optimal transport and large number of particles. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1397-1441. doi: 10.3934/dcds.2014.34.1397

[12]

Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190

[13]

Mary Luz Mouronte, Rosa María Benito. Structural analysis and traffic flow in the transport networks of Madrid. Networks & Heterogeneous Media, 2015, 10 (1) : 127-148. doi: 10.3934/nhm.2015.10.127

[14]

Vladimir S. Matveev and Petar J. Topalov. Metric with ergodic geodesic flow is completely determined by unparameterized geodesics. Electronic Research Announcements, 2000, 6: 98-104.

[15]

Proscovia Namayanja. Chaotic dynamics in a transport equation on a network. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3415-3426. doi: 10.3934/dcdsb.2018283

[16]

Katrin Grunert, Helge Holden, Xavier Raynaud. Lipschitz metric for the Camassa--Holm equation on the line. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2809-2827. doi: 10.3934/dcds.2013.33.2809

[17]

Robert M. Strain. Optimal time decay of the non cut-off Boltzmann equation in the whole space. Kinetic & Related Models, 2012, 5 (3) : 583-613. doi: 10.3934/krm.2012.5.583

[18]

Robert J. McCann. A glimpse into the differential topology and geometry of optimal transport. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1605-1621. doi: 10.3934/dcds.2014.34.1605

[19]

Paul Pegon, Filippo Santambrogio, Davide Piazzoli. Full characterization of optimal transport plans for concave costs. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 6113-6132. doi: 10.3934/dcds.2015.35.6113

[20]

Alexander J. Zaslavski. Stability of a turnpike phenomenon for a class of optimal control systems in metric spaces. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 245-260. doi: 10.3934/naco.2011.1.245

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (55)
  • HTML views (154)
  • Cited by (0)

Other articles
by authors

[Back to Top]