September  2019, 39(9): 5149-5169. doi: 10.3934/dcds.2019209

Dispersion relations for steady periodic water waves of fixed mean-depth with two rotational layers

1. 

Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090, Vienna, Austria

2. 

School of Mathematical Sciences, University College Cork, Western Road, T12 XF62, Cork, Ireland

* Corresponding author: Calin Iulian Martin

Received  July 2018 Revised  April 2019 Published  May 2019

Fund Project: C. I. Martin acknowledges the support of the Science Foundation Ireland (SFI)–research grant 13/CDA/2117 and the support of the Austrian Science Fund (FWF)–research grant P 30878-N32. A. Rodríguez-Sanjurjo acknowledges the support of the Science Foundation Ireland (SFI)–research grant 13/CDA/2117

The aim of this paper is to obtain the dispersion relation for small-amplitude periodic travelling water waves propagating over a flat bed with a specified mean depth under the presence of a discontinuous piecewise constant vorticity. An analysis of the dispersion relation for a model with two rotational layers each having a non-zero constant vorticity is presented. Moreover, we present a stability result for the bifurcation inducing laminar flow solutions.

Citation: Calin Iulian Martin, Adrián Rodríguez-Sanjurjo. Dispersion relations for steady periodic water waves of fixed mean-depth with two rotational layers. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5149-5169. doi: 10.3934/dcds.2019209
References:
[1]

A. Constantin and J. Escher, Symmetry of steady deep-water waves with vorticity, European J. Appl. Math., 15 (2004), 755-768.  doi: 10.1017/S0956792504005777.  Google Scholar

[2]

A. Constantin and J. Escher, Symmetry of steady periodic surface water waves with vorticity, J. Fluid Mech., 498 (2004), 171-181.  doi: 10.1017/S0022112003006773.  Google Scholar

[3]

A. Constantin and W. A. Strauss, Exact steady periodic water waves with vorticity, Comm. Pure Appl. Math., 57 (2004), 481-527.  doi: 10.1002/cpa.3046.  Google Scholar

[4]

A. ConstantinD. Sattinger and W. Strauss, Variational formulations for steady water waves with vorticity, J. Fluid Mech., 548 (2006), 151-163.  doi: 10.1017/S0022112005007469.  Google Scholar

[5]

A. ConstantinM. Ehrnstrom and E. Wahlen, Symmetry of steady periodic gravity water waves with vorticity, Duke Math. J., 140 (2007), 591-603.  doi: 10.1215/S0012-7094-07-14034-1.  Google Scholar

[6]

A. Constantin and W. A. Strauss, Stability properties of steady water waves with vorticity, Comm. Pure Appl. Math., 60 (2007), 911-950.  doi: 10.1002/cpa.20165.  Google Scholar

[7]

A. ConstantinR. I. Ivanov and E. Prodanov, Nearly-Hamiltonian structure for water waves with constant vorticity, J. Math. Fluid Mech., 10 (2008), 224-237.  doi: 10.1007/s00021-006-0230-x.  Google Scholar

[8]

A. Constantin and E. Kartashova, Effect of non-zero constant vorticity on the nonlinear resonances of capillary water waves, Europhysics Letters, 86 (2009), 29001. doi: 10.1209/0295-5075/86/29001.  Google Scholar

[9]

A. Constantin, Two-dimensionality of gravity water flows of constant nonzero vorticity beneath a surface wave train, Eur. J. Mech. B Fluids, 30 (2011), 12-16.  doi: 10.1016/j.euromechflu.2010.09.008.  Google Scholar

[10]

A. Constantin, Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis, CBMS-NFS Regional Conference Series in Applied Mathematics, 81, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011. doi: 10.1137/1.9781611971873.  Google Scholar

[11]

A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity, Annals of Mathematics, 173 (2011), 559-568.  doi: 10.4007/annals.2011.173.1.12.  Google Scholar

[12]

A. Constantin and W. A. Strauss, Periodic traveling gravity water waves with discontinuous vorticity, Arch. Ration. Mech. Anal., 202 (2011), 133-175.  doi: 10.1007/s00205-011-0412-4.  Google Scholar

[13]

A. Constantin and E. Varvaruca, Steady periodic water waves with constant vorticity: Regularity and local bifurcation, Arch. Ration. Mech. Anal., 199 (2011), 33-67.  doi: 10.1007/s00205-010-0314-x.  Google Scholar

[14]

A. Constantin, Dispersion relations for periodic traveling water waves in flows with discontinuous vorticity, Commun. Pure Appl. Anal., 11 (2012), 1397-1406.  doi: 10.3934/cpaa.2012.11.1397.  Google Scholar

[15]

A. Constantin and R. I. Ivanov, A Hamiltonian approach to wave-current interactions in two-layer fluids, Physics of Fluids, 27 (2015), 086603. doi: 10.1063/1.4929457.  Google Scholar

[16]

A. ConstantinR. I. Ivanov and C. I. Martin, Hamiltonian formulation for wave-current interactions in stratified rotational flows, Arch. Ration. Mech. Anal., 221 (2016), 1417-1447.  doi: 10.1007/s00205-016-0990-2.  Google Scholar

[17]

A. ConstantinW. Strauss and E. Varvaruca, Global bifurcation of steady gravity water waves with critical layers, Acta Mathematica, 217 (2016), 195-262.  doi: 10.1007/s11511-017-0144-x.  Google Scholar

[18]

M.-L. Dubreil-Jacotin, Sur la dètermination rigoureuse des ondes permanentes périodiques d'ampleur finie, (French) 1934. 75 pp.  Google Scholar

[19]

M. EhrnströmJ. Escher and E. Wahlén, Steady water waves with multiple critical layers, SIAM J. Math. Anal., 43 (2011), 1436-1456.  doi: 10.1137/100792330.  Google Scholar

[20]

J. EscherA.-V. Matioc and B.-V. Matioc, On stratified steady periodic water waves with linear density distribution and stagnation points, J. Differential Equations, 251 (2011), 2932-2949.  doi: 10.1016/j.jde.2011.03.023.  Google Scholar

[21]

J. Escher, Regularity of rotational travelling water waves, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 370 (2012), 1602-1615.  doi: 10.1098/rsta.2011.0458.  Google Scholar

[22]

J. Escher and B.-V. Matioc, On the analyticity of periodic gravity water waves with integrable vorticity function, Differential Integral Equations, 27 (2014), 217-232.   Google Scholar

[23]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of the Second Order, Second edition. Springer-Verlag, Berlin, 2001.  Google Scholar

[24]

D. Henry, Analyticity of the streamlines for periodic travelling capillary-gravity water waves with vorticity, SIAM J. Math. Anal., 42 (2010), 3103-3111.  doi: 10.1137/100801408.  Google Scholar

[25]

D. Henry, Regularity for steady periodic capillary water waves with vorticity, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 370 (2012), 1616-1628.  doi: 10.1098/rsta.2011.0449.  Google Scholar

[26]

D. Henry, Dispersion relations for steady periodic water waves of fixed mean-depth with an isolated bottom vorticity layer, J. Nonlinear Math. Phys., 19 (2012), 1240007, 14 pp. doi: 10.1142/S1402925112400074.  Google Scholar

[27]

D. Henry and B.-V. Matioc, On the regularity of steady periodic stratified water waves, Commun. Pure Appl. Anal., 11 (2012), 1453-1464.  doi: 10.3934/cpaa.2012.11.1453.  Google Scholar

[28]

D. Henry, Dispersion relations for steady periodic water waves of fixed mean-depth with an isolated layer of vorticity at the surface, Nonlinear Anal. Real World Appl., 14 (2013), 1034-1043.  doi: 10.1016/j.nonrwa.2012.08.015.  Google Scholar

[29]

D. Henry, Large amplitude steady periodic waves for fixed-depth rotational flows, Comm. Partial Differential Equations, 38 (2013), 1015-1037.  doi: 10.1080/03605302.2012.734889.  Google Scholar

[30]

D. Henry and B.-V. Matioc, On the existence of steady periodic capillary-gravity stratified water waves, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 12 (2013), 955–974.  Google Scholar

[31]

D. Henry, Steady periodic waves bifurcating for fixed-depth rotational flows, Quart. Appl. Math., 71 (2013), 455-487.  doi: 10.1090/S0033-569X-2013-01293-8.  Google Scholar

[32]

D. Henry and A.-V. Matioc, Global bifurcation of capillary-gravity-stratified water waves, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 775-786.  doi: 10.1017/S0308210512001990.  Google Scholar

[33]

D. Henry and A.-V. Matioc, On the symmetry of steady equatorial wind waves, Nonlinear Anal. Real World Appl., 18 (2014), 50-56.  doi: 10.1016/j.nonrwa.2014.01.009.  Google Scholar

[34]

D. Henry and B.-V. Matioc, Aspects of the mathematical analysis of nonlinear stratified water waves, Elliptic and Parabolic Equations, 159–177, Springer Proc. Math. Stat., 119, Springer, Cham, 2015. doi: 10.1007/978-3-319-12547-3_7.  Google Scholar

[35]

D. Henry and S. Sastre-Gómez, Steady periodic water waves bifurcating for fixed-depth rotational flows with discontinuous vorticity, Differential Integral Equations, 31 (2018), 1-26.   Google Scholar

[36]

D. Henry, C.-I. Martin and S. Sastre-Gómez, Large amplitude steady periodic water waves for fixed-depth flows with discontinuous vorticity, submitted. Google Scholar

[37]

D. Ionescu-Kruse and C. I. Martin, Periodic Equatorial water flows from a Hamiltonian perspective, J. Differential Equations, 262 (2017), 4451-4474.  doi: 10.1016/j.jde.2017.01.001.  Google Scholar

[38]

I. G. Jonsson, Wave-current interactions. In: Le Mehaut, M., Hanes, D.M., eds., The Sea, Ocean Engineering Science, Vol. 9. New York: Wiley, (1990), 65–120. Google Scholar

[39]

P. Karageorgis, Dispersion relation for water waves with non-constant vorticity, Eur. J. Mech. B Fluids, 34 (2012), 7-12.  doi: 10.1016/j.euromechflu.2012.03.008.  Google Scholar

[40]

M. Kluczek and C. I. Martin, Dispersion relations for fixed mean-depth flows with two discontinuities in vorticity, Nonlinear Anal., 181 (2019), 62-86.  doi: 10.1016/j.na.2018.11.007.  Google Scholar

[41]

J. Ko and W. Strauss, Effect of vorticity on steady water waves, J. Fluid Mech., 608 2008,197–215. doi: 10.1017/S0022112008002371.  Google Scholar

[42]

J. Ko and W. Strauss, Large-amplitude steady rotational water waves, Eur. J. Mech. B Fluids, 27 (2008), 96-109.  doi: 10.1016/j.euromechflu.2007.04.004.  Google Scholar

[43]

V. Kozlov, N. Kuznetsov and E. Lokharu, Steady water waves with vorticity: An analysis of the dispersion equation, J. Fluid Mech., 751 (2014), R3, 13 pp. doi: 10.1017/jfm.2014.322.  Google Scholar

[44]

C. I. Martin, Dispersion relations for periodic water waves with surface tension and discontinuous vorticity, Discrete Cont. Dyn. Syst. - Ser. A, 34 (2013), 3109-3123.  doi: 10.3934/dcds.2014.34.3109.  Google Scholar

[45]

C. I. Martin, Dispersion relations for rotational gravity water flows having two jumps in the vorticity distribution, J. Math. Anal. Appl., 418 (2014), 595-611.  doi: 10.1016/j.jmaa.2014.04.014.  Google Scholar

[46]

C. I. Martin and B.-V. Matioc, Existence of capillary-gravity water waves with piecewise constant vorticity, J. Differential Equations, 256 (2014), 3086-3114.  doi: 10.1016/j.jde.2014.01.036.  Google Scholar

[47]

C. I. Martin, Dispersion relations for gravity water flows with two rotational layers, Eur. J. Mech. B Fluids, 50 (2015), 9-18.  doi: 10.1016/j.euromechflu.2014.10.005.  Google Scholar

[48]

C. I. Martin and B.-V. Matioc, Gravity water flows with discontinuous vorticity and stagnation points, Commun. Math. Sci., 14 (2016), 415-441.  doi: 10.4310/CMS.2016.v14.n2.a5.  Google Scholar

[49]

C. I. Martin, Resonant interactions of capillary-gravity water waves, J. Math. Fluid Mech., 19 (2017), 807-817.  doi: 10.1007/s00021-016-0306-1.  Google Scholar

[50]

C. I. Martin, On periodic geophysical water flows with discontinuous vorticity in the equatorial f-plane approximation, Phil. Trans. R. Soc. A, 376 (2018), 20170096, 23pp. doi: 10.1098/rsta.2017.0096.  Google Scholar

[51]

A.-V. Matioc and B.-V. Matioc, Capillary-gravity water waves with discontinuous vorticity: Existence and regularity results, Comm. Math. Phys., 330 (2014), 859-886.  doi: 10.1007/s00220-014-1918-z.  Google Scholar

[52]

A.-V. Matioc and B.-V. Matioc, On the symmetry of periodic gravity water waves with vorticity, Differential Integral Equations, 26 (2013), 129-140.   Google Scholar

[53]

A. Nachbin and R. Ribeiro-Junior, Capturing the flow beneath water waves, Phil. Trans. R. Soc. A, 376 (2018), 20170098, 17pp. doi: 10.1098/rsta.2017.0098.  Google Scholar

[54]

K. Okuda, Internal flow structure of short wind waves, J. Oceanogr. Soc. Jpn., 38 (1982), 28-42.   Google Scholar

[55]

D. H. Peregrine, Interactions of water waves and currents, Adv. Appl. Mech., 16 (1976), 9-117.   Google Scholar

[56]

O. M. Phillips and M. L. Banner, Wave breaking in the presence of wind drift and swell, J. Fluid Mech., 66 (1974), 625-640.  doi: 10.1017/S0022112074000413.  Google Scholar

[57]

G. P. Thomas and G. Klopman, Wave-current interactions in the nearshore region, in: J. N. Hunt (Ed.), Gravity Waves in Water of Finite Depth, Computational Mechanics Publications, WIT, Southampton, United Kingdom, (1997), 255–319. Google Scholar

[58]

E. Wahlén, Steady water waves with a critical layer, J. Differential Equations, 246 (2009), 2468-2483.  doi: 10.1016/j.jde.2008.10.005.  Google Scholar

[59]

S. Walsh, Stratified steady periodic water waves, SIAM J. Math. Anal., 41 (2009), 1054-1105.  doi: 10.1137/080721583.  Google Scholar

[60]

S. Walsh, Steady stratified periodic gravity waves with surface tension I: Local bifurcation. Discrete Contin, Dyn. Syst. Ser. A, 34 (2014), 3241-3285.  doi: 10.3934/dcds.2014.34.3241.  Google Scholar

show all references

References:
[1]

A. Constantin and J. Escher, Symmetry of steady deep-water waves with vorticity, European J. Appl. Math., 15 (2004), 755-768.  doi: 10.1017/S0956792504005777.  Google Scholar

[2]

A. Constantin and J. Escher, Symmetry of steady periodic surface water waves with vorticity, J. Fluid Mech., 498 (2004), 171-181.  doi: 10.1017/S0022112003006773.  Google Scholar

[3]

A. Constantin and W. A. Strauss, Exact steady periodic water waves with vorticity, Comm. Pure Appl. Math., 57 (2004), 481-527.  doi: 10.1002/cpa.3046.  Google Scholar

[4]

A. ConstantinD. Sattinger and W. Strauss, Variational formulations for steady water waves with vorticity, J. Fluid Mech., 548 (2006), 151-163.  doi: 10.1017/S0022112005007469.  Google Scholar

[5]

A. ConstantinM. Ehrnstrom and E. Wahlen, Symmetry of steady periodic gravity water waves with vorticity, Duke Math. J., 140 (2007), 591-603.  doi: 10.1215/S0012-7094-07-14034-1.  Google Scholar

[6]

A. Constantin and W. A. Strauss, Stability properties of steady water waves with vorticity, Comm. Pure Appl. Math., 60 (2007), 911-950.  doi: 10.1002/cpa.20165.  Google Scholar

[7]

A. ConstantinR. I. Ivanov and E. Prodanov, Nearly-Hamiltonian structure for water waves with constant vorticity, J. Math. Fluid Mech., 10 (2008), 224-237.  doi: 10.1007/s00021-006-0230-x.  Google Scholar

[8]

A. Constantin and E. Kartashova, Effect of non-zero constant vorticity on the nonlinear resonances of capillary water waves, Europhysics Letters, 86 (2009), 29001. doi: 10.1209/0295-5075/86/29001.  Google Scholar

[9]

A. Constantin, Two-dimensionality of gravity water flows of constant nonzero vorticity beneath a surface wave train, Eur. J. Mech. B Fluids, 30 (2011), 12-16.  doi: 10.1016/j.euromechflu.2010.09.008.  Google Scholar

[10]

A. Constantin, Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis, CBMS-NFS Regional Conference Series in Applied Mathematics, 81, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011. doi: 10.1137/1.9781611971873.  Google Scholar

[11]

A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity, Annals of Mathematics, 173 (2011), 559-568.  doi: 10.4007/annals.2011.173.1.12.  Google Scholar

[12]

A. Constantin and W. A. Strauss, Periodic traveling gravity water waves with discontinuous vorticity, Arch. Ration. Mech. Anal., 202 (2011), 133-175.  doi: 10.1007/s00205-011-0412-4.  Google Scholar

[13]

A. Constantin and E. Varvaruca, Steady periodic water waves with constant vorticity: Regularity and local bifurcation, Arch. Ration. Mech. Anal., 199 (2011), 33-67.  doi: 10.1007/s00205-010-0314-x.  Google Scholar

[14]

A. Constantin, Dispersion relations for periodic traveling water waves in flows with discontinuous vorticity, Commun. Pure Appl. Anal., 11 (2012), 1397-1406.  doi: 10.3934/cpaa.2012.11.1397.  Google Scholar

[15]

A. Constantin and R. I. Ivanov, A Hamiltonian approach to wave-current interactions in two-layer fluids, Physics of Fluids, 27 (2015), 086603. doi: 10.1063/1.4929457.  Google Scholar

[16]

A. ConstantinR. I. Ivanov and C. I. Martin, Hamiltonian formulation for wave-current interactions in stratified rotational flows, Arch. Ration. Mech. Anal., 221 (2016), 1417-1447.  doi: 10.1007/s00205-016-0990-2.  Google Scholar

[17]

A. ConstantinW. Strauss and E. Varvaruca, Global bifurcation of steady gravity water waves with critical layers, Acta Mathematica, 217 (2016), 195-262.  doi: 10.1007/s11511-017-0144-x.  Google Scholar

[18]

M.-L. Dubreil-Jacotin, Sur la dètermination rigoureuse des ondes permanentes périodiques d'ampleur finie, (French) 1934. 75 pp.  Google Scholar

[19]

M. EhrnströmJ. Escher and E. Wahlén, Steady water waves with multiple critical layers, SIAM J. Math. Anal., 43 (2011), 1436-1456.  doi: 10.1137/100792330.  Google Scholar

[20]

J. EscherA.-V. Matioc and B.-V. Matioc, On stratified steady periodic water waves with linear density distribution and stagnation points, J. Differential Equations, 251 (2011), 2932-2949.  doi: 10.1016/j.jde.2011.03.023.  Google Scholar

[21]

J. Escher, Regularity of rotational travelling water waves, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 370 (2012), 1602-1615.  doi: 10.1098/rsta.2011.0458.  Google Scholar

[22]

J. Escher and B.-V. Matioc, On the analyticity of periodic gravity water waves with integrable vorticity function, Differential Integral Equations, 27 (2014), 217-232.   Google Scholar

[23]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of the Second Order, Second edition. Springer-Verlag, Berlin, 2001.  Google Scholar

[24]

D. Henry, Analyticity of the streamlines for periodic travelling capillary-gravity water waves with vorticity, SIAM J. Math. Anal., 42 (2010), 3103-3111.  doi: 10.1137/100801408.  Google Scholar

[25]

D. Henry, Regularity for steady periodic capillary water waves with vorticity, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 370 (2012), 1616-1628.  doi: 10.1098/rsta.2011.0449.  Google Scholar

[26]

D. Henry, Dispersion relations for steady periodic water waves of fixed mean-depth with an isolated bottom vorticity layer, J. Nonlinear Math. Phys., 19 (2012), 1240007, 14 pp. doi: 10.1142/S1402925112400074.  Google Scholar

[27]

D. Henry and B.-V. Matioc, On the regularity of steady periodic stratified water waves, Commun. Pure Appl. Anal., 11 (2012), 1453-1464.  doi: 10.3934/cpaa.2012.11.1453.  Google Scholar

[28]

D. Henry, Dispersion relations for steady periodic water waves of fixed mean-depth with an isolated layer of vorticity at the surface, Nonlinear Anal. Real World Appl., 14 (2013), 1034-1043.  doi: 10.1016/j.nonrwa.2012.08.015.  Google Scholar

[29]

D. Henry, Large amplitude steady periodic waves for fixed-depth rotational flows, Comm. Partial Differential Equations, 38 (2013), 1015-1037.  doi: 10.1080/03605302.2012.734889.  Google Scholar

[30]

D. Henry and B.-V. Matioc, On the existence of steady periodic capillary-gravity stratified water waves, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 12 (2013), 955–974.  Google Scholar

[31]

D. Henry, Steady periodic waves bifurcating for fixed-depth rotational flows, Quart. Appl. Math., 71 (2013), 455-487.  doi: 10.1090/S0033-569X-2013-01293-8.  Google Scholar

[32]

D. Henry and A.-V. Matioc, Global bifurcation of capillary-gravity-stratified water waves, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 775-786.  doi: 10.1017/S0308210512001990.  Google Scholar

[33]

D. Henry and A.-V. Matioc, On the symmetry of steady equatorial wind waves, Nonlinear Anal. Real World Appl., 18 (2014), 50-56.  doi: 10.1016/j.nonrwa.2014.01.009.  Google Scholar

[34]

D. Henry and B.-V. Matioc, Aspects of the mathematical analysis of nonlinear stratified water waves, Elliptic and Parabolic Equations, 159–177, Springer Proc. Math. Stat., 119, Springer, Cham, 2015. doi: 10.1007/978-3-319-12547-3_7.  Google Scholar

[35]

D. Henry and S. Sastre-Gómez, Steady periodic water waves bifurcating for fixed-depth rotational flows with discontinuous vorticity, Differential Integral Equations, 31 (2018), 1-26.   Google Scholar

[36]

D. Henry, C.-I. Martin and S. Sastre-Gómez, Large amplitude steady periodic water waves for fixed-depth flows with discontinuous vorticity, submitted. Google Scholar

[37]

D. Ionescu-Kruse and C. I. Martin, Periodic Equatorial water flows from a Hamiltonian perspective, J. Differential Equations, 262 (2017), 4451-4474.  doi: 10.1016/j.jde.2017.01.001.  Google Scholar

[38]

I. G. Jonsson, Wave-current interactions. In: Le Mehaut, M., Hanes, D.M., eds., The Sea, Ocean Engineering Science, Vol. 9. New York: Wiley, (1990), 65–120. Google Scholar

[39]

P. Karageorgis, Dispersion relation for water waves with non-constant vorticity, Eur. J. Mech. B Fluids, 34 (2012), 7-12.  doi: 10.1016/j.euromechflu.2012.03.008.  Google Scholar

[40]

M. Kluczek and C. I. Martin, Dispersion relations for fixed mean-depth flows with two discontinuities in vorticity, Nonlinear Anal., 181 (2019), 62-86.  doi: 10.1016/j.na.2018.11.007.  Google Scholar

[41]

J. Ko and W. Strauss, Effect of vorticity on steady water waves, J. Fluid Mech., 608 2008,197–215. doi: 10.1017/S0022112008002371.  Google Scholar

[42]

J. Ko and W. Strauss, Large-amplitude steady rotational water waves, Eur. J. Mech. B Fluids, 27 (2008), 96-109.  doi: 10.1016/j.euromechflu.2007.04.004.  Google Scholar

[43]

V. Kozlov, N. Kuznetsov and E. Lokharu, Steady water waves with vorticity: An analysis of the dispersion equation, J. Fluid Mech., 751 (2014), R3, 13 pp. doi: 10.1017/jfm.2014.322.  Google Scholar

[44]

C. I. Martin, Dispersion relations for periodic water waves with surface tension and discontinuous vorticity, Discrete Cont. Dyn. Syst. - Ser. A, 34 (2013), 3109-3123.  doi: 10.3934/dcds.2014.34.3109.  Google Scholar

[45]

C. I. Martin, Dispersion relations for rotational gravity water flows having two jumps in the vorticity distribution, J. Math. Anal. Appl., 418 (2014), 595-611.  doi: 10.1016/j.jmaa.2014.04.014.  Google Scholar

[46]

C. I. Martin and B.-V. Matioc, Existence of capillary-gravity water waves with piecewise constant vorticity, J. Differential Equations, 256 (2014), 3086-3114.  doi: 10.1016/j.jde.2014.01.036.  Google Scholar

[47]

C. I. Martin, Dispersion relations for gravity water flows with two rotational layers, Eur. J. Mech. B Fluids, 50 (2015), 9-18.  doi: 10.1016/j.euromechflu.2014.10.005.  Google Scholar

[48]

C. I. Martin and B.-V. Matioc, Gravity water flows with discontinuous vorticity and stagnation points, Commun. Math. Sci., 14 (2016), 415-441.  doi: 10.4310/CMS.2016.v14.n2.a5.  Google Scholar

[49]

C. I. Martin, Resonant interactions of capillary-gravity water waves, J. Math. Fluid Mech., 19 (2017), 807-817.  doi: 10.1007/s00021-016-0306-1.  Google Scholar

[50]

C. I. Martin, On periodic geophysical water flows with discontinuous vorticity in the equatorial f-plane approximation, Phil. Trans. R. Soc. A, 376 (2018), 20170096, 23pp. doi: 10.1098/rsta.2017.0096.  Google Scholar

[51]

A.-V. Matioc and B.-V. Matioc, Capillary-gravity water waves with discontinuous vorticity: Existence and regularity results, Comm. Math. Phys., 330 (2014), 859-886.  doi: 10.1007/s00220-014-1918-z.  Google Scholar

[52]

A.-V. Matioc and B.-V. Matioc, On the symmetry of periodic gravity water waves with vorticity, Differential Integral Equations, 26 (2013), 129-140.   Google Scholar

[53]

A. Nachbin and R. Ribeiro-Junior, Capturing the flow beneath water waves, Phil. Trans. R. Soc. A, 376 (2018), 20170098, 17pp. doi: 10.1098/rsta.2017.0098.  Google Scholar

[54]

K. Okuda, Internal flow structure of short wind waves, J. Oceanogr. Soc. Jpn., 38 (1982), 28-42.   Google Scholar

[55]

D. H. Peregrine, Interactions of water waves and currents, Adv. Appl. Mech., 16 (1976), 9-117.   Google Scholar

[56]

O. M. Phillips and M. L. Banner, Wave breaking in the presence of wind drift and swell, J. Fluid Mech., 66 (1974), 625-640.  doi: 10.1017/S0022112074000413.  Google Scholar

[57]

G. P. Thomas and G. Klopman, Wave-current interactions in the nearshore region, in: J. N. Hunt (Ed.), Gravity Waves in Water of Finite Depth, Computational Mechanics Publications, WIT, Southampton, United Kingdom, (1997), 255–319. Google Scholar

[58]

E. Wahlén, Steady water waves with a critical layer, J. Differential Equations, 246 (2009), 2468-2483.  doi: 10.1016/j.jde.2008.10.005.  Google Scholar

[59]

S. Walsh, Stratified steady periodic water waves, SIAM J. Math. Anal., 41 (2009), 1054-1105.  doi: 10.1137/080721583.  Google Scholar

[60]

S. Walsh, Steady stratified periodic gravity waves with surface tension I: Local bifurcation. Discrete Contin, Dyn. Syst. Ser. A, 34 (2014), 3241-3285.  doi: 10.3934/dcds.2014.34.3241.  Google Scholar

Figure 1.  Sketch of the graph of the polynomial providing the dispersion relation for two negative vorticities under the condition (44). The root x01 does not satisfy the non-stagnation condition while the root x02 verifies it if and only if (47) is assumed
[1]

Silvia Sastre-Gomez. Equivalent formulations for steady periodic water waves of fixed mean-depth with discontinuous vorticity. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2669-2680. doi: 10.3934/dcds.2017114

[2]

Adrian Constantin. Dispersion relations for periodic traveling water waves in flows with discontinuous vorticity. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1397-1406. doi: 10.3934/cpaa.2012.11.1397

[3]

Calin Iulian Martin. Dispersion relations for periodic water waves with surface tension and discontinuous vorticity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3109-3123. doi: 10.3934/dcds.2014.34.3109

[4]

Walter A. Strauss. Vorticity jumps in steady water waves. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1101-1112. doi: 10.3934/dcdsb.2012.17.1101

[5]

Jifeng Chu, Joachim Escher. Steady periodic equatorial water waves with vorticity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4713-4729. doi: 10.3934/dcds.2019191

[6]

G. A. Athanassoulis, K. A. Belibassakis. New evolution equations for non-linear water waves in general bathymetry with application to steady travelling solutions in constant, but arbitrary, depth. Conference Publications, 2007, 2007 (Special) : 75-84. doi: 10.3934/proc.2007.2007.75

[7]

Delia Ionescu-Kruse, Anca-Voichita Matioc. Small-amplitude equatorial water waves with constant vorticity: Dispersion relations and particle trajectories. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3045-3060. doi: 10.3934/dcds.2014.34.3045

[8]

Shu-Ming Sun. Existence theory of capillary-gravity waves on water of finite depth. Mathematical Control & Related Fields, 2014, 4 (3) : 315-363. doi: 10.3934/mcrf.2014.4.315

[9]

Mats Ehrnström, Gabriele Villari. Recent progress on particle trajectories in steady water waves. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 539-559. doi: 10.3934/dcdsb.2009.12.539

[10]

David Henry, Bogdan--Vasile Matioc. On the regularity of steady periodic stratified water waves. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1453-1464. doi: 10.3934/cpaa.2012.11.1453

[11]

Gerhard Tulzer. On the symmetry of steady periodic water waves with stagnation points. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1577-1586. doi: 10.3934/cpaa.2012.11.1577

[12]

Mats Ehrnström. Deep-water waves with vorticity: symmetry and rotational behaviour. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 483-491. doi: 10.3934/dcds.2007.19.483

[13]

Bogdan-Vasile Matioc. A characterization of the symmetric steady water waves in terms of the underlying flow. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3125-3133. doi: 10.3934/dcds.2014.34.3125

[14]

Angel Castro, Diego Córdoba, Charles Fefferman, Francisco Gancedo, Javier Gómez-Serrano. Structural stability for the splash singularities of the water waves problem. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 4997-5043. doi: 10.3934/dcds.2014.34.4997

[15]

Delia Ionescu-Kruse. Elliptic and hyperelliptic functions describing the particle motion beneath small-amplitude water waves with constant vorticity. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1475-1496. doi: 10.3934/cpaa.2012.11.1475

[16]

Denys Dutykh, Delia Ionescu-Kruse. Effects of vorticity on the travelling waves of some shallow water two-component systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5521-5541. doi: 10.3934/dcds.2019225

[17]

Shunlian Liu, David M. Ambrose. Sufficiently strong dispersion removes ill-posedness in truncated series models of water waves. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3123-3147. doi: 10.3934/dcds.2019129

[18]

Cheng Wang. The primitive equations formulated in mean vorticity. Conference Publications, 2003, 2003 (Special) : 880-887. doi: 10.3934/proc.2003.2003.880

[19]

Hung Le. Elliptic equations with transmission and Wentzell boundary conditions and an application to steady water waves in the presence of wind. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3357-3385. doi: 10.3934/dcds.2018144

[20]

Rui Huang, Ming Mei, Kaijun Zhang, Qifeng Zhang. Asymptotic stability of non-monotone traveling waves for time-delayed nonlocal dispersion equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1331-1353. doi: 10.3934/dcds.2016.36.1331

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (55)
  • HTML views (155)
  • Cited by (0)

[Back to Top]