    September  2019, 39(9): 5431-5463. doi: 10.3934/dcds.2019222

## $L^1$ estimates for oscillating integrals and their applications to semi-linear models with $\sigma$-evolution like structural damping

 1 School of Applied Mathematics and Informatics, Hanoi University of Science and Technology, No.1 Dai Co Viet road, Hanoi, Vietnam 2 Faculty for Mathematics and Computer Science, TU Bergakademie Freiberg, Prüferstr. 9, 09596, Freiberg, Germany

* Corresponding author: Tuan Anh Dao

Received  November 2018 Revised  March 2019 Published  May 2019

Fund Project: The first author is supported by Vietnamese Government's Scholarship (Grant number: 2015/911).

The present paper is a continuation of our recent paper . We will consider the following Cauchy problem for semi-linear structurally damped
 $\sigma$
-evolution models:
 $\begin{equation*} u_{tt}+ (-\Delta)^\sigma u+ \mu (-\Delta)^\delta u_t = f(u, u_t), \, \, \, u(0, x) = u_0(x), \, \, \, u_t(0, x) = u_1(x) \end{equation*}$
with
 $\sigma \ge 1$
,
 $\mu>0$
and
 $\delta \in (\frac{\sigma}{2}, \sigma]$
. Our aim is to study two main models including
 $\sigma$
-evolution models with structural damping
 $\delta \in (\frac{\sigma}{2}, \sigma)$
and those with visco-elastic damping
 $\delta = \sigma$
. Here the function
 $f(u, u_t)$
stands for power nonlinearities
 $|u|^{p}$
and
 $|u_t|^{p}$
with a given number
 $p>1$
. We are interested in investigating the global (in time) existence of small data Sobolev solutions to the above semi-linear models from suitable function spaces basing on
 $L^q$
 $L^{m}$
regularity for the initial data, with
 $q\in (1, \infty)$
and
 $m\in [1, q)$
.
Citation: Tuan Anh Dao, Michael Reissig. $L^1$ estimates for oscillating integrals and their applications to semi-linear models with $\sigma$-evolution like structural damping. Discrete & Continuous Dynamical Systems, 2019, 39 (9) : 5431-5463. doi: 10.3934/dcds.2019222
##### References:
  M. D'Abbicco and M. R. Ebert, An application of $L^{p}-L^{q}$ decay estimates to the semilinear wave equation with parabolic-like structural damping, Nonlinear Analysis, 99 (2014), 16-34.  doi: 10.1016/j.na.2013.12.021.  Google Scholar  M. D'Abbicco and M. R. Ebert, A new phenomenon in the critical exponent for structurally damped semi-linear evolution equations, Nonlinear Analysis, 149 (2017), 1-40.  doi: 10.1016/j.na.2016.10.010.  Google Scholar  M. D'Abbicco and M. Reissig, Semilinear structural damped waves, Math. Methods Appl. Sci., 37 (2014), 1570-1592.  doi: 10.1002/mma.2913.  Google Scholar  T. A. Dao and M. Reissig, An application of $L^1$ estimates for oscillating integrals to parabolic like semi-linear structurally damped $\sigma$-evolution models, J. Math. Anal. Appl., 476 (2019), 426-463.  doi: 10.1016/j.jmaa.2019.03.048. Google Scholar  M. R. Ebert and M. Reissig, Methods for Partial Differential Equations, Qualitative Properties of Solutions, Phase Space Analysis, Semilinear Models, Birkhäuser, 2018. doi: 10.1007/978-3-319-66456-9.  Google Scholar  Cav. Francesco Faà di Bruno, Note sur une nouvelle formule de calcul differentiel, Quarterly J. Pure Appl. Math., 1 (1857), 359-360.   Google Scholar  V. A. Galaktionov, E. L. Mitidieri and S. I. Pohozaev, Blow-up for higher-order prabolic, hyperbolic, dispersion and Schrödinger equations, in Monogr. Res. Notes Math., Chapman and Hall/CRC, 2014. Google Scholar  L. Grafakos, Classical and Modern Fourier Analysis, Prentice Hall, 2004. Google Scholar  H. Hajaiej, L. Molinet, T. Ozawa and B. Wang, Necessary and sufficient conditions for the fractional Gagliardo-Nirenberg inequalities and applications to Navier-Stokes and generalized boson equations, Harmonic Analysis and Nonlinear Partial Differential Equations, RIMS Kokyuroku Bessatsu, B26, Res.Inst.Math.Sci. (RIMS), Kyoto, (2011), 159–175. Google Scholar  R. Ikehata, Asymptotic profiles for wave equations with strong damping, J. Differential Equations, 257 (2014), 2159-2177.  doi: 10.1016/j.jde.2014.05.031.  Google Scholar  R. Ikehata, G. Todorova and B. Yordanov, Wave equations with strong damping in Hilbert spaces, J. Differential Equations, 254 (2013), 3352-3368.  doi: 10.1016/j.jde.2013.01.023.  Google Scholar  M. Kainane, Structural Damped $\sigma$-evolution Operators, PhD thesis, TU Bergakademie Freiberg, Germany, 2014. Google Scholar  J. Marcinkiewicz, Sur les multiplicateurs des séries de Fourier, Studia Math., 8 (1939), 78-91.  doi: 10.4064/sm-8-1-78-91. Google Scholar  A. Miyachi, On some Fourier multipliers for $H^p(\mathbb{R}^n)$, J. Fac. Sci. Univ. Tokyo IA, 27 (1980), 157-179. Google Scholar  E. Mitidieri and S. I. Pohozaev, Non-existence of weak solutions for some degenerate elliptic and parabolic problems on $\mathbb{R}^n$, J. Evol. Equ., 1 (2001), 189-220.  doi: 10.1007/PL00001368.  Google Scholar  T. Narazaki and M. Reissig, $L^1$ estimates for oscillating integrals related to structural damped wave models, in, Progr. Nonlinear Differential Equations Appl., Studies in Phase Space Analysis with Applications to PDEs (eds. M. Cicognani, F. Colombini, D. Del Santo), Birkhäuser, 84 (2013), 215–258. doi: 10.1007/978-1-4614-6348-1_11.  Google Scholar  A. Palmieri and M. Reissig, Semi-linear wave models with power non-linearity and scale-invariant time-dependent mass and dissipation, Ⅱ, Math. Nachr., 291 (2018), 1859-1892.  doi: 10.1002/mana.201700144.  Google Scholar  D. T. Pham, M. Kainane Mezadek and M. Reissig, Global existence for semi-linear structurally damped $\sigma$-evolution models, J. Math. Anal. Appl., 431 (2015), 569-596.  doi: 10.1016/j.jmaa.2015.06.001.  Google Scholar  F. Pizichillo, Linear and Non-Linear Damped Wave Equations, Master thesis, University of Bari, 2014. Google Scholar  T. Runst and W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, De Gruyter Series in Nonlinear Analysis and Applications, Walter de Gruyter & Co., Berlin, 1996. doi: 10.1515/9783110812411.  Google Scholar  Y. Shibata, On the rate of decay of solutions to linear viscoelastic equation, Math. Methods Appl. Sci., 23 (2000), 203-226.  doi: 10.1002/(SICI)1099-1476(200002)23:3<203::AID-MMA111>3.0.CO;2-M.  Google Scholar  C. G. Simander, On Dirichlet Boundary Value Problem, An $L^p$-Theory Based on a Generalization of Gårding's Inequality, Lecture Notes in Mathematics, 268, Springer, Berlin, 1972. Google Scholar  E. Stein and G. Weiss, Fractional integrals on $n$-dimensional Euclidean space, J. Math. Mech., 7 (1958), 503-514.  doi: 10.1512/iumj.1958.7.57030.  Google Scholar  F. Weisz, Marcinkiewicz multiplier theorem and the Sunouchi operator for Ciesielski-Fourier series, Journal of Approximation Theory, 133 (2005), 195-220.  doi: 10.1016/j.jat.2004.12.017.  Google Scholar

show all references

##### References:
  M. D'Abbicco and M. R. Ebert, An application of $L^{p}-L^{q}$ decay estimates to the semilinear wave equation with parabolic-like structural damping, Nonlinear Analysis, 99 (2014), 16-34.  doi: 10.1016/j.na.2013.12.021.  Google Scholar  M. D'Abbicco and M. R. Ebert, A new phenomenon in the critical exponent for structurally damped semi-linear evolution equations, Nonlinear Analysis, 149 (2017), 1-40.  doi: 10.1016/j.na.2016.10.010.  Google Scholar  M. D'Abbicco and M. Reissig, Semilinear structural damped waves, Math. Methods Appl. Sci., 37 (2014), 1570-1592.  doi: 10.1002/mma.2913.  Google Scholar  T. A. Dao and M. Reissig, An application of $L^1$ estimates for oscillating integrals to parabolic like semi-linear structurally damped $\sigma$-evolution models, J. Math. Anal. Appl., 476 (2019), 426-463.  doi: 10.1016/j.jmaa.2019.03.048. Google Scholar  M. R. Ebert and M. Reissig, Methods for Partial Differential Equations, Qualitative Properties of Solutions, Phase Space Analysis, Semilinear Models, Birkhäuser, 2018. doi: 10.1007/978-3-319-66456-9.  Google Scholar  Cav. Francesco Faà di Bruno, Note sur une nouvelle formule de calcul differentiel, Quarterly J. Pure Appl. Math., 1 (1857), 359-360.   Google Scholar  V. A. Galaktionov, E. L. Mitidieri and S. I. Pohozaev, Blow-up for higher-order prabolic, hyperbolic, dispersion and Schrödinger equations, in Monogr. Res. Notes Math., Chapman and Hall/CRC, 2014. Google Scholar  L. Grafakos, Classical and Modern Fourier Analysis, Prentice Hall, 2004. Google Scholar  H. Hajaiej, L. Molinet, T. Ozawa and B. Wang, Necessary and sufficient conditions for the fractional Gagliardo-Nirenberg inequalities and applications to Navier-Stokes and generalized boson equations, Harmonic Analysis and Nonlinear Partial Differential Equations, RIMS Kokyuroku Bessatsu, B26, Res.Inst.Math.Sci. (RIMS), Kyoto, (2011), 159–175. Google Scholar  R. Ikehata, Asymptotic profiles for wave equations with strong damping, J. Differential Equations, 257 (2014), 2159-2177.  doi: 10.1016/j.jde.2014.05.031.  Google Scholar  R. Ikehata, G. Todorova and B. Yordanov, Wave equations with strong damping in Hilbert spaces, J. Differential Equations, 254 (2013), 3352-3368.  doi: 10.1016/j.jde.2013.01.023.  Google Scholar  M. Kainane, Structural Damped $\sigma$-evolution Operators, PhD thesis, TU Bergakademie Freiberg, Germany, 2014. Google Scholar  J. Marcinkiewicz, Sur les multiplicateurs des séries de Fourier, Studia Math., 8 (1939), 78-91.  doi: 10.4064/sm-8-1-78-91. Google Scholar  A. Miyachi, On some Fourier multipliers for $H^p(\mathbb{R}^n)$, J. Fac. Sci. Univ. Tokyo IA, 27 (1980), 157-179. Google Scholar  E. Mitidieri and S. I. Pohozaev, Non-existence of weak solutions for some degenerate elliptic and parabolic problems on $\mathbb{R}^n$, J. Evol. Equ., 1 (2001), 189-220.  doi: 10.1007/PL00001368.  Google Scholar  T. Narazaki and M. Reissig, $L^1$ estimates for oscillating integrals related to structural damped wave models, in, Progr. Nonlinear Differential Equations Appl., Studies in Phase Space Analysis with Applications to PDEs (eds. M. Cicognani, F. Colombini, D. Del Santo), Birkhäuser, 84 (2013), 215–258. doi: 10.1007/978-1-4614-6348-1_11.  Google Scholar  A. Palmieri and M. Reissig, Semi-linear wave models with power non-linearity and scale-invariant time-dependent mass and dissipation, Ⅱ, Math. Nachr., 291 (2018), 1859-1892.  doi: 10.1002/mana.201700144.  Google Scholar  D. T. Pham, M. Kainane Mezadek and M. Reissig, Global existence for semi-linear structurally damped $\sigma$-evolution models, J. Math. Anal. Appl., 431 (2015), 569-596.  doi: 10.1016/j.jmaa.2015.06.001.  Google Scholar  F. Pizichillo, Linear and Non-Linear Damped Wave Equations, Master thesis, University of Bari, 2014. Google Scholar  T. Runst and W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, De Gruyter Series in Nonlinear Analysis and Applications, Walter de Gruyter & Co., Berlin, 1996. doi: 10.1515/9783110812411.  Google Scholar  Y. Shibata, On the rate of decay of solutions to linear viscoelastic equation, Math. Methods Appl. Sci., 23 (2000), 203-226.  doi: 10.1002/(SICI)1099-1476(200002)23:3<203::AID-MMA111>3.0.CO;2-M.  Google Scholar  C. G. Simander, On Dirichlet Boundary Value Problem, An $L^p$-Theory Based on a Generalization of Gårding's Inequality, Lecture Notes in Mathematics, 268, Springer, Berlin, 1972. Google Scholar  E. Stein and G. Weiss, Fractional integrals on $n$-dimensional Euclidean space, J. Math. Mech., 7 (1958), 503-514.  doi: 10.1512/iumj.1958.7.57030.  Google Scholar  F. Weisz, Marcinkiewicz multiplier theorem and the Sunouchi operator for Ciesielski-Fourier series, Journal of Approximation Theory, 133 (2005), 195-220.  doi: 10.1016/j.jat.2004.12.017.  Google Scholar
  Tuan Anh Dao, Hironori Michihisa. Study of semi-linear $\sigma$-evolution equations with frictional and visco-elastic damping. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1581-1608. doi: 10.3934/cpaa.2020079  Xiaoqiang Dai, Wenke Li. Non-global solution for visco-elastic dynamical system with nonlinear source term in control problem. Electronic Research Archive, , () : -. doi: 10.3934/era.2021073  Linglong Du. Long time behavior for the visco-elastic damped wave equation in $\mathbb{R}^n_+$ and the boundary effect. Networks & Heterogeneous Media, 2018, 13 (4) : 549-565. doi: 10.3934/nhm.2018025  Tiancong Chen, Qing Han. Smooth local solutions to Weingarten equations and $\sigma_k$-equations. Discrete & Continuous Dynamical Systems, 2016, 36 (2) : 653-660. doi: 10.3934/dcds.2016.36.653  Akisato Kubo. Nonlinear evolution equations associated with mathematical models. Conference Publications, 2011, 2011 (Special) : 881-890. doi: 10.3934/proc.2011.2011.881  Kim Dang Phung, Gengsheng Wang, Xu Zhang. On the existence of time optimal controls for linear evolution equations. Discrete & Continuous Dynamical Systems - B, 2007, 8 (4) : 925-941. doi: 10.3934/dcdsb.2007.8.925  Tôn Việt Tạ. Existence results for linear evolution equations of parabolic type. Communications on Pure & Applied Analysis, 2018, 17 (3) : 751-785. doi: 10.3934/cpaa.2018039  Akisato Kubo, Hiroki Hoshino, Katsutaka Kimura. Global existence and asymptotic behaviour of solutions for nonlinear evolution equations related to a tumour invasion model. Conference Publications, 2015, 2015 (special) : 733-744. doi: 10.3934/proc.2015.0733  Khalid Addi, Oanh Chau, Daniel Goeleven. On some frictional contact problems with velocity condition for elastic and visco-elastic materials. Discrete & Continuous Dynamical Systems, 2011, 31 (4) : 1039-1051. doi: 10.3934/dcds.2011.31.1039  Qiang Li, Mei Wei. Existence and asymptotic stability of periodic solutions for neutral evolution equations with delay. Evolution Equations & Control Theory, 2020, 9 (3) : 753-772. doi: 10.3934/eect.2020032  Tomás Caraballo, M. J. Garrido-Atienza, B. Schmalfuss. Existence of exponentially attracting stationary solutions for delay evolution equations. Discrete & Continuous Dynamical Systems, 2007, 18 (2&3) : 271-293. doi: 10.3934/dcds.2007.18.271  Hongmei Cheng, Rong Yuan. Existence and asymptotic stability of traveling fronts for nonlocal monostable evolution equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 3007-3022. doi: 10.3934/dcdsb.2017160  Laura Levaggi. Existence of sliding motions for nonlinear evolution equations in Banach spaces. Conference Publications, 2013, 2013 (special) : 477-487. doi: 10.3934/proc.2013.2013.477  Antonio Segatti. Global attractor for a class of doubly nonlinear abstract evolution equations. Discrete & Continuous Dynamical Systems, 2006, 14 (4) : 801-820. doi: 10.3934/dcds.2006.14.801  Antônio Luiz Pereira, Severino Horácio da Silva. Continuity of global attractors for a class of non local evolution equations. Discrete & Continuous Dynamical Systems, 2010, 26 (3) : 1073-1100. doi: 10.3934/dcds.2010.26.1073  Xuewei Ju, Desheng Li. Global synchronising behavior of evolution equations with exponentially growing nonautonomous forcing. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1921-1944. doi: 10.3934/cpaa.2018091  Robert Hesse, Alexandra Neamţu. Global solutions and random dynamical systems for rough evolution equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (7) : 2723-2748. doi: 10.3934/dcdsb.2020029  Grigory Panasenko, Ruxandra Stavre. Asymptotic analysis of a non-periodic flow in a thin channel with visco-elastic wall. Networks & Heterogeneous Media, 2008, 3 (3) : 651-673. doi: 10.3934/nhm.2008.3.651  Marita Thomas, Sven Tornquist. Discrete approximation of dynamic phase-field fracture in visco-elastic materials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (11) : 3865-3924. doi: 10.3934/dcdss.2021067  Mengyun Liu, Chengbo Wang. Global existence for semilinear damped wave equations in relation with the Strauss conjecture. Discrete & Continuous Dynamical Systems, 2020, 40 (2) : 709-724. doi: 10.3934/dcds.2020058

2020 Impact Factor: 1.392