September  2019, 39(9): 5491-5520. doi: 10.3934/dcds.2019224

Topologies of continuity for Carathéodory delay differential equations with applications in non-autonomous dynamics

Departamento de Matemática Aplicada, E.I. Industriales, Universidad de Valladolid, Paseo del Cauce 59, 47011 Valladolid, Spain

* Corresponding author: Rafael Obaya

Received  January 2019 Published  May 2019

Fund Project: Partly supported by MINECO/FEDER under project MTM2015-66330-P and EU Marie-Skłodowska-Curie ITN Critical Transitions in Complex Systems (H2020-MSCA-ITN-2014 643073 CRITICS)

We study some already introduced and some new strong and weak topologies of integral type to provide continuous dependence on continuous initial data for the solutions of non-autonomous Carathéodory delay differential equations. As a consequence, we obtain new families of continuous skew-product semiflows generated by delay differential equations whose vector fields belong to such metric topological vector spaces of Lipschitz Carathéodory functions. Sufficient conditions for the equivalence of all or some of the considered strong or weak topologies are also given. Finally, we also provide results of continuous dependence of the solutions as well as of continuity of the skew-product semiflows generated by Carathéodory delay differential equations when the considered phase space is a Sobolev space.

Citation: Iacopo P. Longo, Sylvia Novo, Rafael Obaya. Topologies of continuity for Carathéodory delay differential equations with applications in non-autonomous dynamics. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5491-5520. doi: 10.3934/dcds.2019224
References:
[1]

L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, Heidelberg, 1998. doi: 10.1007/978-3-662-12878-7. Google Scholar

[2]

Z. Artstein, Topological dynamics of an ordinary differential equation, J. Differential Equations, 23 (1977), 216-223. doi: 10.1016/0022-0396(77)90127-9. Google Scholar

[3]

Z. Artstein, Topological dynamics of ordinary differential equations and Kurzweil equations, J. Differential Equations, 23 (1977), 224-243. doi: 10.1016/0022-0396(77)90128-0. Google Scholar

[4]

Z. Artstein, The limiting equations of nonautonomous ordinary differential equations, J. Differential Equations, 25 (1977), 184-202. doi: 10.1016/0022-0396(77)90199-1. Google Scholar

[5]

B. Aulbach and T. Wanner, Integral manifolds for Carathéodory type differential equations in Banach spaces, Six Lectures on Dynamical Systems (B. Aulbach & F. Colonius eds), World Scientific, Singapore, 1996, 45–119. doi: 10.1142/9789812812865_0002. Google Scholar

[6]

T. Caraballo and X. Han, Applied Non-Autonomous And Random Dynamical Systems. Applied Dynamical Systems, SpringerBriefs in Mathematics. Springer, Cham, 2016. doi: 10.1007/978-3-319-49247-6. Google Scholar

[7]

A. Carvalho, J. A. Langa and J. Robinson, Attractors for Infinite-Dimensional Non-au-tono-mous Dynamical Systems, Springer-Verlag New York, 2013. doi: 10.1007/978-1-4614-4581-4. Google Scholar

[8]

E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955. Google Scholar

[9]

N. Dunford and J. T. Schwartz, Linear Operators: Part Ⅰ General Theory, Wiley-Interscience, New York, 1988. Google Scholar

[10]

J. K. Hale and M. A. Cruz, Existence, uniqueness and continuous dependence for hereditary systems, Ann. Mat. Pura Appl., (4) 85 (1970), 63–81. doi: 10.1007/BF02413530. Google Scholar

[11]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences, 99, Springer-Verlag, Berlin, Heidelberg, New York, 1993. doi: 10.1007/978-1-4612-4342-7. Google Scholar

[12]

A. J. Heunis, Continuous dependence of the solutions of an ordinary differential equation, J. Differential Equations, 54 (1984), 121-138. doi: 10.1016/0022-0396(84)90155-4. Google Scholar

[13]

R. Johnson, R. Obaya, S. Novo, C. Nuñez and R. Fabbri, Nonautonomous Linear Hamiltonian Systems: Oscillation, Spectral Theory And Control, Developments in Mathematics, 36, $ \rm{Springer, Switzerland, 2016.} $ doi: 10.1007/978-3-319-29025-6. Google Scholar

[14]

O. Kallenberg, Random Measures, Third Edition, $ \rm{Akademie-Verlag, Berlin, 1983.} $ Google Scholar

[15]

I. P. LongoS. Novo and R. Obaya, Topologies of $L^p_loc$ type for Carathéodory functions with applications in non-autonomous differential equations, J. Differential Equations, 263 (2017), 7187-7220. doi: 10.1016/j.jde.2017.08.006. Google Scholar

[16]

I. P. Longo, S. Novo and R. Obaya, Weak topologies for Carathéodory differential equations: Continuous dependence, exponential dichotomy and attractors, J. Dynam. Differential Equations, (2018). doi: 10.1007/s10884-018-9710-y. Google Scholar

[17]

R. K. Miller and G. Sell, Volterra Integral Equations and Topological Dynamics, Mem. Amer. Math. Soc., 102, Amer. Math. Soc., Providence, 1970. doi: 10.1090/memo/0102. Google Scholar

[18]

R. K. Miller and G. Sell, Existence, uniqueness and continuity of solutions of integral equations, Addendum: Ibid., 87 (1970), 281-286. doi: 10.1007/BF02411981. Google Scholar

[19]

L. W. Neustadt, On the solutions of certain integral-like operator equations. Existence, uniqueness and dependence theorems, Arch. Rational Mech. Anal., 38 (1970), 131-160. doi: 10.1007/BF00249976. Google Scholar

[20]

Z. Opial, Continuous parameter dependence in linear systems of differential equations, J. Differential Equations, 3 (1967), 571-579. doi: 10.1016/0022-0396(67)90017-4. Google Scholar

[21]

C. Pötzsche and M. Rasmussen, Computation of integral manifolds for Carathéodory differential equations, J. Numer. Anal., 30 (2010), 401-430. doi: 10.1093/imanum/drn059. Google Scholar

[22]

R. J. Sacker and G. R. Sell, A spectral theory for linear differential systems, J. Differential Equations, 27 (1978), 320-358. doi: 10.1016/0022-0396(78)90057-8. Google Scholar

[23]

G. Sell, Compact sets of nonlinear operators, Funkcial. Ekvac., 11 (1968), 131-138. Google Scholar

[24]

G. Sell, Topological Dynamics and Ordinary Differential Equations, $ \rm{Van Nostrand-Reinhold, London, 1971. }$ Google Scholar

[25]

W. Shen and Y. Yi, Almost automorphic and almost periodic dynamics in skew-product semiflows, Mem. Amer. Math. Soc., 136 (1998), x+93 pp. doi: 10.1090/memo/0647. Google Scholar

show all references

References:
[1]

L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, Heidelberg, 1998. doi: 10.1007/978-3-662-12878-7. Google Scholar

[2]

Z. Artstein, Topological dynamics of an ordinary differential equation, J. Differential Equations, 23 (1977), 216-223. doi: 10.1016/0022-0396(77)90127-9. Google Scholar

[3]

Z. Artstein, Topological dynamics of ordinary differential equations and Kurzweil equations, J. Differential Equations, 23 (1977), 224-243. doi: 10.1016/0022-0396(77)90128-0. Google Scholar

[4]

Z. Artstein, The limiting equations of nonautonomous ordinary differential equations, J. Differential Equations, 25 (1977), 184-202. doi: 10.1016/0022-0396(77)90199-1. Google Scholar

[5]

B. Aulbach and T. Wanner, Integral manifolds for Carathéodory type differential equations in Banach spaces, Six Lectures on Dynamical Systems (B. Aulbach & F. Colonius eds), World Scientific, Singapore, 1996, 45–119. doi: 10.1142/9789812812865_0002. Google Scholar

[6]

T. Caraballo and X. Han, Applied Non-Autonomous And Random Dynamical Systems. Applied Dynamical Systems, SpringerBriefs in Mathematics. Springer, Cham, 2016. doi: 10.1007/978-3-319-49247-6. Google Scholar

[7]

A. Carvalho, J. A. Langa and J. Robinson, Attractors for Infinite-Dimensional Non-au-tono-mous Dynamical Systems, Springer-Verlag New York, 2013. doi: 10.1007/978-1-4614-4581-4. Google Scholar

[8]

E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955. Google Scholar

[9]

N. Dunford and J. T. Schwartz, Linear Operators: Part Ⅰ General Theory, Wiley-Interscience, New York, 1988. Google Scholar

[10]

J. K. Hale and M. A. Cruz, Existence, uniqueness and continuous dependence for hereditary systems, Ann. Mat. Pura Appl., (4) 85 (1970), 63–81. doi: 10.1007/BF02413530. Google Scholar

[11]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences, 99, Springer-Verlag, Berlin, Heidelberg, New York, 1993. doi: 10.1007/978-1-4612-4342-7. Google Scholar

[12]

A. J. Heunis, Continuous dependence of the solutions of an ordinary differential equation, J. Differential Equations, 54 (1984), 121-138. doi: 10.1016/0022-0396(84)90155-4. Google Scholar

[13]

R. Johnson, R. Obaya, S. Novo, C. Nuñez and R. Fabbri, Nonautonomous Linear Hamiltonian Systems: Oscillation, Spectral Theory And Control, Developments in Mathematics, 36, $ \rm{Springer, Switzerland, 2016.} $ doi: 10.1007/978-3-319-29025-6. Google Scholar

[14]

O. Kallenberg, Random Measures, Third Edition, $ \rm{Akademie-Verlag, Berlin, 1983.} $ Google Scholar

[15]

I. P. LongoS. Novo and R. Obaya, Topologies of $L^p_loc$ type for Carathéodory functions with applications in non-autonomous differential equations, J. Differential Equations, 263 (2017), 7187-7220. doi: 10.1016/j.jde.2017.08.006. Google Scholar

[16]

I. P. Longo, S. Novo and R. Obaya, Weak topologies for Carathéodory differential equations: Continuous dependence, exponential dichotomy and attractors, J. Dynam. Differential Equations, (2018). doi: 10.1007/s10884-018-9710-y. Google Scholar

[17]

R. K. Miller and G. Sell, Volterra Integral Equations and Topological Dynamics, Mem. Amer. Math. Soc., 102, Amer. Math. Soc., Providence, 1970. doi: 10.1090/memo/0102. Google Scholar

[18]

R. K. Miller and G. Sell, Existence, uniqueness and continuity of solutions of integral equations, Addendum: Ibid., 87 (1970), 281-286. doi: 10.1007/BF02411981. Google Scholar

[19]

L. W. Neustadt, On the solutions of certain integral-like operator equations. Existence, uniqueness and dependence theorems, Arch. Rational Mech. Anal., 38 (1970), 131-160. doi: 10.1007/BF00249976. Google Scholar

[20]

Z. Opial, Continuous parameter dependence in linear systems of differential equations, J. Differential Equations, 3 (1967), 571-579. doi: 10.1016/0022-0396(67)90017-4. Google Scholar

[21]

C. Pötzsche and M. Rasmussen, Computation of integral manifolds for Carathéodory differential equations, J. Numer. Anal., 30 (2010), 401-430. doi: 10.1093/imanum/drn059. Google Scholar

[22]

R. J. Sacker and G. R. Sell, A spectral theory for linear differential systems, J. Differential Equations, 27 (1978), 320-358. doi: 10.1016/0022-0396(78)90057-8. Google Scholar

[23]

G. Sell, Compact sets of nonlinear operators, Funkcial. Ekvac., 11 (1968), 131-138. Google Scholar

[24]

G. Sell, Topological Dynamics and Ordinary Differential Equations, $ \rm{Van Nostrand-Reinhold, London, 1971. }$ Google Scholar

[25]

W. Shen and Y. Yi, Almost automorphic and almost periodic dynamics in skew-product semiflows, Mem. Amer. Math. Soc., 136 (1998), x+93 pp. doi: 10.1090/memo/0647. Google Scholar

[1]

Sylvia Novo, Carmen Núñez, Rafael Obaya, Ana M. Sanz. Skew-product semiflows for non-autonomous partial functional differential equations with delay. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4291-4321. doi: 10.3934/dcds.2014.34.4291

[2]

Hans Josef Pesch. Carathéodory's royal road of the calculus of variations: Missed exits to the maximum principle of optimal control theory. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 161-173. doi: 10.3934/naco.2013.3.161

[3]

David Cheban, Cristiana Mammana. Continuous dependence of attractors on parameters of non-autonomous dynamical systems and infinite iterated function systems. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 499-515. doi: 10.3934/dcds.2007.18.499

[4]

Juan A. Calzada, Rafael Obaya, Ana M. Sanz. Continuous separation for monotone skew-product semiflows: From theoretical to numerical results. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 915-944. doi: 10.3934/dcdsb.2015.20.915

[5]

Carmen Núñez, Rafael Obaya. A non-autonomous bifurcation theory for deterministic scalar differential equations. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 701-730. doi: 10.3934/dcdsb.2008.9.701

[6]

Tomás Caraballo, P.E. Kloeden. Non-autonomous attractors for integro-differential evolution equations. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 17-36. doi: 10.3934/dcdss.2009.2.17

[7]

P.E. Kloeden, Victor S. Kozyakin. The perturbation of attractors of skew-product flows with a shadowing driving system. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 883-893. doi: 10.3934/dcds.2001.7.883

[8]

Saša Kocić. Reducibility of skew-product systems with multidimensional Brjuno base flows. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 261-283. doi: 10.3934/dcds.2011.29.261

[9]

Tomás Caraballo, Alexandre N. Carvalho, Henrique B. da Costa, José A. Langa. Equi-attraction and continuity of attractors for skew-product semiflows. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 2949-2967. doi: 10.3934/dcdsb.2016081

[10]

Eduardo Hernández, Donal O'Regan. $C^{\alpha}$-Hölder classical solutions for non-autonomous neutral differential equations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 241-260. doi: 10.3934/dcds.2011.29.241

[11]

Rafael Obaya, Ana M. Sanz. Persistence in non-autonomous quasimonotone parabolic partial functional differential equations with delay. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3947-3970. doi: 10.3934/dcdsb.2018338

[12]

Giselle A. Monteiro, Milan Tvrdý. Generalized linear differential equations in a Banach space: Continuous dependence on a parameter. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 283-303. doi: 10.3934/dcds.2013.33.283

[13]

Bogdan Sasu, A. L. Sasu. Input-output conditions for the asymptotic behavior of linear skew-product flows and applications. Communications on Pure & Applied Analysis, 2006, 5 (3) : 551-569. doi: 10.3934/cpaa.2006.5.551

[14]

T. Caraballo, J. A. Langa, J. Valero. Structure of the pullback attractor for a non-autonomous scalar differential inclusion. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 979-994. doi: 10.3934/dcdss.2016037

[15]

Minzilia A. Sagadeeva, Sophiya A. Zagrebina, Natalia A. Manakova. Optimal control of solutions of a multipoint initial-final problem for non-autonomous evolutionary Sobolev type equation. Evolution Equations & Control Theory, 2019, 8 (3) : 473-488. doi: 10.3934/eect.2019023

[16]

Cung The Anh, Tang Quoc Bao. Dynamics of non-autonomous nonclassical diffusion equations on $R^n$. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1231-1252. doi: 10.3934/cpaa.2012.11.1231

[17]

Bixiang Wang. Random attractors for non-autonomous stochastic wave equations with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 269-300. doi: 10.3934/dcds.2014.34.269

[18]

Peter E. Kloeden, José Real, Chunyou Sun. Robust exponential attractors for non-autonomous equations with memory. Communications on Pure & Applied Analysis, 2011, 10 (3) : 885-915. doi: 10.3934/cpaa.2011.10.885

[19]

Sylvia Novo, Rafael Obaya, Ana M. Sanz. Exponential stability in non-autonomous delayed equations with applications to neural networks. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 517-536. doi: 10.3934/dcds.2007.18.517

[20]

Shengfan Zhou, Linshan Wang. Kernel sections for damped non-autonomous wave equations with critical exponent. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 399-412. doi: 10.3934/dcds.2003.9.399

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (69)
  • HTML views (135)
  • Cited by (0)

Other articles
by authors

[Back to Top]