    June  2020, 40(6): 3117-3142. doi: 10.3934/dcds.2019226

## A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation

 1 Dipartimento di Matematica, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Roma, Italy 2 Istituto per le Applicazioni del Calcolo Mauro Picone, CNR, Rome, Italy 3 CNRS, Laboratoire de Mathématique, Analyse Numérique et EDP, Université de Paris-Sud, F-91405 Orsay Cedex, France 4 Faculty of Engineering, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, 889-2192, Japan 5 Faculty of Engineering, Musashino University, 3-3-3 Ariake, Koto-ku, Tokyo, 135-8181, Japan 6 Meiji Institute for Advanced Study of Mathematical Sciences, Meiji University, 4-21-1 Nakano, Nakano-ku, Tokyo, 164-8525, Japan 7 Department of Basic Sciences, Faculty of Engineering, Kyushu Institute of Technology, 1-1, Sensui-cho, Tobata, Kitakyushu, 804-8550, Japan

* Corresponding author: Hirofumi Izuhara

Received  April 2018 Revised  October 2018 Published  June 2019

We consider a mathematical model describing population dynamics of normal and abnormal cell densities with contact inhibition of cell growth from a theoretical point of view. In the first part of this paper, we discuss the global existence of a solution satisfying the segregation property in one space dimension for general initial data. Here, the term segregation property means that the different types of cells keep spatially segregated when the initial densities are segregated. The second part is devoted to singular limit problems for solutions of the PDE system and traveling wave solutions, respectively. Actually, the contact inhibition model considered in this paper possesses quite similar properties to those of the Fisher-KPP equation. In particular, the limit problems reveal a relation between the contact inhibition model and the Fisher-KPP equation.

Citation: Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226
##### References:
  M. Abercrombie, Contact inhibition in tissue culture, In Vitro, 6 (1970), 128-142.  doi: 10.1007/BF02616114. Google Scholar  L. Ambrosio, F. Bouchut and C. De Lellis, Well-posedness for a class of hyperbolic systems of conservation laws in several space dimensions, Comm. Partial Diff. Equ., 29 (2004), 1635-1651.  doi: 10.1081/PDE-200040210.  Google Scholar  M. Bertsch, R. Dal Passo and M. Mimura, A free boundary problem arising in a simplifies tumour growth model of contact inhibition, Interfaces Free Boundaries, 12 (2010), 235-250.  doi: 10.4171/IFB/233.  Google Scholar  M. Bertsch, D. Hilhorst, H. Izuhara and and M. Mimura, A nonlinear parabolic-hyperbolic system for contact inhibition of cell-growth, Diff. Eq. Appl., 12 (2010), 235-250.  doi: 10.7153/dea-04-09.  Google Scholar  M. Bertsch, D. Hilhorst, H. Izuhara, M. Mimura and T. Wakasa, Traveling wave solutions of a parabolic-hyperbolic system for contact inhibition of cell-growth, European J. Appl. Math., 26 (2015), 297-323.  doi: 10.1017/S0956792515000042.  Google Scholar  M. Bertsch, M. Mimura and T. Wakasa, Modeling contact inhibition of growth: Traveling waves, Netw. Heterog. Media, 8 (2012), 131-147.  doi: 10.3934/nhm.2013.8.131.  Google Scholar  M. Bertsch, H. Izuhara, M. Mimura and T. Wakasa, (in preparation). Google Scholar  M. Bertsch, H. Izuhara, M. Mimura and T. Wakasa, Standing and traveling waves in a parabolic-hyperbolic system, to appear in Discret. Contin. Dyn. Syst. Ser. A. doi: 10.3934/nhm.2013.8.131.  Google Scholar  Z. Biró, Stability of travelling waves for degenerate reaction-diffusion equations of KPP-type, Advanced Nonlinear Studies, 2 (2002), 357-371.  doi: 10.1515/ans-2002-0402.  Google Scholar  F. Boyer and P. Fabrie, Mathematical tools for the study of the incompressible Navier-Stokes equations and related models, Applied Mathematical Sciences, 183, Springer, New York, 2013. doi: 10.1007/978-1-4614-5975-0.  Google Scholar  H. Brezis, Analyse Fonctionnelle, Masson, 1983. Google Scholar  J. A. Carrillo, S. Fagioli, F. Santambrogio and M. Schmidtchen, Splitting schemes and segregation in reaction cross-diffusion systems, SIAM J. Math. Anal., 50 (2018), 5695-5718.  doi: 10.1137/17M1158379.  Google Scholar  M. Chaplain, L. Graziano and L. Preziosi, Mathematical modelling of the loss of tissue compression responsiveness and its role in solid tumour development, Math. Med. Biol., 23 (2006), 197-229.  doi: 10.1093/imammb/dql009. Google Scholar  C. De Lellis, Notes on hyperbolic systems of conservation laws and transport equations, in Handbook of Differential Equations: Evolutionary Differential Equations, (2006), 277–382. doi: 10.1016/S1874-5717(07)80007-7.  Google Scholar  E. Dibenedetto, Continuity of weak solutions to a general porous medium equation, Indiana Univ. Math. J., 32 (1983), 83-118.  doi: 10.1512/iumj.1983.32.32008.  Google Scholar  J. Goncerzewicz and D. Hilhorst, Large time behavior of a class of solutions of second order conservation laws, Banach Center Publ., 52 (2000), 119-132. Google Scholar  O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monographs, 23, Amer. Math. Soc., Providence, R.I. 1968. Google Scholar  L. A. Peletier, The porous media equation, in Application of Nonlinear Analysis in the Physical Sciences, Pitman, Boston, 1981,229–241. Google Scholar  J. Sherratt, Wavefront propagation in a competition equation with a new motility term modelling contact inhibition between cell populations, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 456 (2000), 2365-2386.  doi: 10.1098/rspa.2000.0616.  Google Scholar  J. Sherratt and M. Chaplain, A new mathematical model for avascular tumour growth, J. Math. Biol., 43 (2001), 291-312.  doi: 10.1007/s002850100088.  Google Scholar

show all references

##### References:
  M. Abercrombie, Contact inhibition in tissue culture, In Vitro, 6 (1970), 128-142.  doi: 10.1007/BF02616114. Google Scholar  L. Ambrosio, F. Bouchut and C. De Lellis, Well-posedness for a class of hyperbolic systems of conservation laws in several space dimensions, Comm. Partial Diff. Equ., 29 (2004), 1635-1651.  doi: 10.1081/PDE-200040210.  Google Scholar  M. Bertsch, R. Dal Passo and M. Mimura, A free boundary problem arising in a simplifies tumour growth model of contact inhibition, Interfaces Free Boundaries, 12 (2010), 235-250.  doi: 10.4171/IFB/233.  Google Scholar  M. Bertsch, D. Hilhorst, H. Izuhara and and M. Mimura, A nonlinear parabolic-hyperbolic system for contact inhibition of cell-growth, Diff. Eq. Appl., 12 (2010), 235-250.  doi: 10.7153/dea-04-09.  Google Scholar  M. Bertsch, D. Hilhorst, H. Izuhara, M. Mimura and T. Wakasa, Traveling wave solutions of a parabolic-hyperbolic system for contact inhibition of cell-growth, European J. Appl. Math., 26 (2015), 297-323.  doi: 10.1017/S0956792515000042.  Google Scholar  M. Bertsch, M. Mimura and T. Wakasa, Modeling contact inhibition of growth: Traveling waves, Netw. Heterog. Media, 8 (2012), 131-147.  doi: 10.3934/nhm.2013.8.131.  Google Scholar  M. Bertsch, H. Izuhara, M. Mimura and T. Wakasa, (in preparation). Google Scholar  M. Bertsch, H. Izuhara, M. Mimura and T. Wakasa, Standing and traveling waves in a parabolic-hyperbolic system, to appear in Discret. Contin. Dyn. Syst. Ser. A. doi: 10.3934/nhm.2013.8.131.  Google Scholar  Z. Biró, Stability of travelling waves for degenerate reaction-diffusion equations of KPP-type, Advanced Nonlinear Studies, 2 (2002), 357-371.  doi: 10.1515/ans-2002-0402.  Google Scholar  F. Boyer and P. Fabrie, Mathematical tools for the study of the incompressible Navier-Stokes equations and related models, Applied Mathematical Sciences, 183, Springer, New York, 2013. doi: 10.1007/978-1-4614-5975-0.  Google Scholar  H. Brezis, Analyse Fonctionnelle, Masson, 1983. Google Scholar  J. A. Carrillo, S. Fagioli, F. Santambrogio and M. Schmidtchen, Splitting schemes and segregation in reaction cross-diffusion systems, SIAM J. Math. Anal., 50 (2018), 5695-5718.  doi: 10.1137/17M1158379.  Google Scholar  M. Chaplain, L. Graziano and L. Preziosi, Mathematical modelling of the loss of tissue compression responsiveness and its role in solid tumour development, Math. Med. Biol., 23 (2006), 197-229.  doi: 10.1093/imammb/dql009. Google Scholar  C. De Lellis, Notes on hyperbolic systems of conservation laws and transport equations, in Handbook of Differential Equations: Evolutionary Differential Equations, (2006), 277–382. doi: 10.1016/S1874-5717(07)80007-7.  Google Scholar  E. Dibenedetto, Continuity of weak solutions to a general porous medium equation, Indiana Univ. Math. J., 32 (1983), 83-118.  doi: 10.1512/iumj.1983.32.32008.  Google Scholar  J. Goncerzewicz and D. Hilhorst, Large time behavior of a class of solutions of second order conservation laws, Banach Center Publ., 52 (2000), 119-132. Google Scholar  O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monographs, 23, Amer. Math. Soc., Providence, R.I. 1968. Google Scholar  L. A. Peletier, The porous media equation, in Application of Nonlinear Analysis in the Physical Sciences, Pitman, Boston, 1981,229–241. Google Scholar  J. Sherratt, Wavefront propagation in a competition equation with a new motility term modelling contact inhibition between cell populations, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 456 (2000), 2365-2386.  doi: 10.1098/rspa.2000.0616.  Google Scholar  J. Sherratt and M. Chaplain, A new mathematical model for avascular tumour growth, J. Math. Biol., 43 (2001), 291-312.  doi: 10.1007/s002850100088.  Google Scholar Snapshots of dynamics in (1) with compactly supported initial data. The parameter values are $\alpha = 4$, $\beta = 3$, $\gamma = 1$ and $k = 0.5$. The solid and dashed curves indicate $u$ and $v$, respectively The relation between the parameter $k$ and the wave velocity $c_k^*$, where the horizontal and vertical axes indicate $k$ and $c_k^*$, respectively. The other parameter values are $\alpha = 4$, $\beta = 3$ and $\gamma = 1$ $(\varphi, \psi)$-phase planes for (40) with $k = 2$ and $\gamma = 1$ : (0) $c = 0$, (i) $c = 0.8$, (ii) $c = 1$, (iii) $c = 1.2$
  Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323  Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118  Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273  Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345  Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016  Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243  Nicolas Rougerie. On two properties of the Fisher information. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020049  Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272  Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380  Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249  Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434  Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256  Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217  Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252  Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452  Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248  Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348  Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $q$-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440  Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215  Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

2019 Impact Factor: 1.338