June  2020, 40(6): 3485-3507. doi: 10.3934/dcds.2019227

Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms

1. 

School of Mathematics and Information Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, China

2. 

Department of Mathematics and Computer Science, John Jay College of Criminal Justice, CUNY, New York, NY 10019, USA

3. 

School of Science, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China

* Corresponding author: Yi Li

Received  April 2018 Revised  November 2018 Published  June 2019

Fund Project: Y. Jia and J. Wu are supported in part by the Natural Science Foundations of China (11771262, 11671243, 61672021), by the Natural Science Basic Research Plan in Shaanxi Province of China (2018JM1020)

We consider the structure and the stability of positive radial solutions of a semilinear inhomogeneous elliptic equation with multiple growth terms
$ \Delta u+\sum\limits_{i = 1}^{k}K_i(|x|)u^{p_i}+\mu f(|x|) = 0, \quad x\in\mathbb{R}^n, $
which is a generalization of Matukuma's equation describing the dynamics of a globular cluster of stars. Equations similar to this kind have come up both in geometry and in physics, and have been a subject of extensive studies. Our result shows that any positive radial solution is stable or weakly asymptotically stable with respect to certain norm.
Citation: Yunfeng Jia, Yi Li, Jianhua Wu, Hong-Kun Xu. Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3485-3507. doi: 10.3934/dcds.2019227
References:
[1]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Adv. Math., 30 (1978), 33-76.  doi: 10.1016/0001-8708(78)90130-5.  Google Scholar

[2]

S. Bae, Infinite multiplicity and separation structure of positive solutions for a semilinear elliptic equation in $\mathbb{R}^n$, J. Differential Equations, 200 (2004), 274-311.  doi: 10.1016/j.jde.2003.11.006.  Google Scholar

[3]

S. Bae, Separation structure of positive radial solutions of a semilinear elliptic equation in $\mathbb{R}^n$, J. Differential Equations, 194 (2003), 460-499.  doi: 10.1016/S0022-0396(03)00172-4.  Google Scholar

[4]

S. Bae and T.-K. Chang, On a class of semilinear elliptic equations in $\mathbb{R}^n$, J. Differential Equations, 185 (2002), 225-250.  doi: 10.1006/jdeq.2001.4162.  Google Scholar

[5]

S. Bae and W.-M. Ni, Existence and infinite multiplicity for an inhomogeneous semilinear elliptic equation on $\mathbb{R}^n$, Math. Ann., 320 (2001), 191-210.  doi: 10.1007/PL00004468.  Google Scholar

[6]

S.-H. Chen and G.-Z. Lu, Asymptotic behavior of radial solutions for a class of semilinear elliptic equations, J. Differential Equations, 133 (1997), 340-354.  doi: 10.1006/jdeq.1996.3208.  Google Scholar

[7]

Y. Deng and Y. Li, Existence of multiple positive solutions for a semilinear elliptic equation, Adv. Differential Equations, 2 (1997), 361-382.   Google Scholar

[8]

Y. DengY. Li and Y. Liu, On the stability of the positive radial steady states for a semilinear Cauchy problem, Nonlinear Anal., 54 (2003), 291-318.  doi: 10.1016/S0362-546X(03)00064-6.  Google Scholar

[9]

Y. DengY. Li and F. Yang, On the stability of the positive steady states for a nonhomogeneous semilinear Cauchy problem, J. Differential Equations, 228 (2006), 507-529.  doi: 10.1016/j.jde.2006.02.010.  Google Scholar

[10]

Y. Deng and F. Yang, Existence and asymptotic behavior of positive solutions for an inhomogeneous semilinear elliptic equation, Nonlinear Anal., 68 (2008), 246-272.  doi: 10.1016/j.na.2006.10.046.  Google Scholar

[11]

W.-R. DerrickS. Chen and J. A. Cima, Oscillatory radial solutions of semilinear elliptic equations, J. Math. Anal. Appl., 208 (1997), 425-445.  doi: 10.1006/jmaa.1997.5325.  Google Scholar

[12]

W.-Y. Ding and W.-M. Ni, On the elliptic equation $\Delta u+ku^{\frac{(n+2)}{(n-2)}} = 0$ and related topics, Duke Math. J., 52 (1985), 485-506.  doi: 10.1215/S0012-7094-85-05224-X.  Google Scholar

[13]

A. S. Eddington, The dynamics of a globular stellar system, Monthly Notices Roy. Astronom. Soc., 75 (1915), 366-376.   Google Scholar

[14]

M. Franca, Some results on the m-Laplace equations with two growth terms, J. Differential Equations, 17 (2005), 391-425.  doi: 10.1007/s10884-005-4572-5.  Google Scholar

[15]

A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, New Jersey, 1964.  Google Scholar

[16]

H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t = \Delta u+u^{1+\alpha}$, J. Fac. Sci. Univ. Tokyo, 13 (1966), 109-124.   Google Scholar

[17]

B. GidasW.-M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 (1979), 209-243.  doi: 10.1007/BF01221125.  Google Scholar

[18]

C.-F. Gui, On positive entire solutions of the elliptic equation $\Delta u+K(x)u^p = 0$ and its applications to Riemannian geometry, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 225-237.  doi: 10.1017/S0308210500022708.  Google Scholar

[19]

C.-F. Gui, Positive entire solutions of equation $\Delta u+f(x, u) = 0$, J. Differential Equations, 99 (1992), 245-280.  doi: 10.1016/0022-0396(92)90023-G.  Google Scholar

[20]

C.-F. GuiW.-M. Ni and X.-F. Wang, Further study on a nonlinear heat equation, J. Differential Equations, 169 (2001), 588-613.  doi: 10.1006/jdeq.2000.3909.  Google Scholar

[21]

C.-F. GuiW.-M. Ni and X.-F. Wang, On the stability and instability of positive steady state of a semilinear heat equation in $\mathbb{R}^n$, Comm. Pure Appl. Math., 45 (1992), 1153-1181.  doi: 10.1002/cpa.3160450906.  Google Scholar

[22]

N. Kawano, On bounded entire solutions of semilinear elliptic equations, Hiroshima Math. J., 14 (1984), 125-158.  doi: 10.32917/hmj/1206133151.  Google Scholar

[23]

T. Kusano and M. Naito, Oscillation theory of entire solutions of second order superlinear elliptic equations, Funkcial. Ekvac., 30 (1987), 269-282.   Google Scholar

[24]

T.-Y. Lee and W.-M. Ni, Global existence, large time behavior and life span of solutions of semilinear parabolic Cauchy problems, Trans. Amer. Math. Soc., 333 (1992), 365-371.  doi: 10.1090/S0002-9947-1992-1057781-6.  Google Scholar

[25]

Y. Li, Asymptotic behavior of positive solutions of equation $\Delta u+K(x)u^p = 0$ in $\mathbb{R}^n$, J. Differential Equations, 95 (1992), 304-330.  doi: 10.1016/0022-0396(92)90034-K.  Google Scholar

[26]

Y. Li and W.-M. Ni, On the asymptotic behavior and radial symmetry of positive solutions of semilinear elliptic equations in $\mathbb{R}^n$ I. Asymptotic behavior, Arch. Rational Mech. Anal., 118 (1992), 195-222.  doi: 10.1007/BF00387895.  Google Scholar

[27]

Y. LiuY. Li and Y. Deng, Separation property of solution for a semilinear elliptic equation, J. Differential Equations, 163 (2000), 381-406.  doi: 10.1006/jdeq.1999.3735.  Google Scholar

[28]

T. Matukuma, Dynamics of globular clusters, Nippon Temmongakkai Yoho, 1 (1930), 68–89 (In Japanese). Google Scholar

[29]

M. Naito, Asymptotic behaviors of solutions of second order differential equations with integral coefficients, Trans. Amer. Math. Soc., 282 (1984), 577-588.  doi: 10.1090/S0002-9947-1984-0732107-9.  Google Scholar

[30]

M. Naito, A note on bounded positive entire solution of semiliner elliptic equations, Hiroshima Math. J., 14 (1984), 211-214.  doi: 10.32917/hmj/1206133156.  Google Scholar

[31]

W.-M. Ni, On the elliptic equation $\Delta u+K(x)u^{\frac{(n+2)}{(n-2)}}=0$, it's generalizations and applications in geometry, Indiana Univ. Math. J., 31 (1982), 493-529.  doi: 10.1512/iumj.1982.31.31040.  Google Scholar

[32]

W.-M. Ni and S. Yotsutani, Semilinear elliptic equations of Matukuma type and related topics, Japan J. Appl. Math., 5 (1988), 1-32.  doi: 10.1007/BF03167899.  Google Scholar

[33]

K. Nishihara, Asymptotic behaviors of solutions of second order differential equations, J. Math. Anal. Appl., 189 (1995), 424-441.  doi: 10.1006/jmaa.1995.1028.  Google Scholar

[34]

P. Polacik and E. Yanagida, A Liouville property and quasiconvergence for a semilinear heat equation, J. Differential Equations, 208 (2005), 194-214.  doi: 10.1016/j.jde.2003.10.019.  Google Scholar

[35]

P. Polacik and E. Yanagida, On bounded and unbounded global solutions of a supercritical semilinear heat equation, Math. Ann., 327 (2003), 745-771.  doi: 10.1007/s00208-003-0469-y.  Google Scholar

[36]

X.-F. Wang, On Cauchy problem for reaction-diffusion equations, Trans. Amer. Math. Soc., 337 (1993), 549-590.  doi: 10.1090/S0002-9947-1993-1153016-5.  Google Scholar

[37]

F. Weissler, Existence and nonexistence of global solution for semilinear heat equation, Israel J. Math., 38 (1981), 29-40.  doi: 10.1007/BF02761845.  Google Scholar

[38]

F. Yang, Entire positive solutions for an inhomogeneous semilinear biharmonic equation, Nonlinear Anal., 70 (2009), 1365-1376.  doi: 10.1016/j.na.2008.02.016.  Google Scholar

[39]

F. Yang and Z. Zhang, On the stability of the positive radial steady states for a semilinear Cauchy problem, Nonlinear Anal., 80 (2013), 109-121.  doi: 10.1016/j.na.2012.11.003.  Google Scholar

[40]

F. Yang and D. Zhang, Separation property of positive radial solutions for a general semilinear elliptic equation, Acta Math. Sci., 31 (2011), 181-193.  doi: 10.1016/S0252-9602(11)60219-1.  Google Scholar

show all references

References:
[1]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Adv. Math., 30 (1978), 33-76.  doi: 10.1016/0001-8708(78)90130-5.  Google Scholar

[2]

S. Bae, Infinite multiplicity and separation structure of positive solutions for a semilinear elliptic equation in $\mathbb{R}^n$, J. Differential Equations, 200 (2004), 274-311.  doi: 10.1016/j.jde.2003.11.006.  Google Scholar

[3]

S. Bae, Separation structure of positive radial solutions of a semilinear elliptic equation in $\mathbb{R}^n$, J. Differential Equations, 194 (2003), 460-499.  doi: 10.1016/S0022-0396(03)00172-4.  Google Scholar

[4]

S. Bae and T.-K. Chang, On a class of semilinear elliptic equations in $\mathbb{R}^n$, J. Differential Equations, 185 (2002), 225-250.  doi: 10.1006/jdeq.2001.4162.  Google Scholar

[5]

S. Bae and W.-M. Ni, Existence and infinite multiplicity for an inhomogeneous semilinear elliptic equation on $\mathbb{R}^n$, Math. Ann., 320 (2001), 191-210.  doi: 10.1007/PL00004468.  Google Scholar

[6]

S.-H. Chen and G.-Z. Lu, Asymptotic behavior of radial solutions for a class of semilinear elliptic equations, J. Differential Equations, 133 (1997), 340-354.  doi: 10.1006/jdeq.1996.3208.  Google Scholar

[7]

Y. Deng and Y. Li, Existence of multiple positive solutions for a semilinear elliptic equation, Adv. Differential Equations, 2 (1997), 361-382.   Google Scholar

[8]

Y. DengY. Li and Y. Liu, On the stability of the positive radial steady states for a semilinear Cauchy problem, Nonlinear Anal., 54 (2003), 291-318.  doi: 10.1016/S0362-546X(03)00064-6.  Google Scholar

[9]

Y. DengY. Li and F. Yang, On the stability of the positive steady states for a nonhomogeneous semilinear Cauchy problem, J. Differential Equations, 228 (2006), 507-529.  doi: 10.1016/j.jde.2006.02.010.  Google Scholar

[10]

Y. Deng and F. Yang, Existence and asymptotic behavior of positive solutions for an inhomogeneous semilinear elliptic equation, Nonlinear Anal., 68 (2008), 246-272.  doi: 10.1016/j.na.2006.10.046.  Google Scholar

[11]

W.-R. DerrickS. Chen and J. A. Cima, Oscillatory radial solutions of semilinear elliptic equations, J. Math. Anal. Appl., 208 (1997), 425-445.  doi: 10.1006/jmaa.1997.5325.  Google Scholar

[12]

W.-Y. Ding and W.-M. Ni, On the elliptic equation $\Delta u+ku^{\frac{(n+2)}{(n-2)}} = 0$ and related topics, Duke Math. J., 52 (1985), 485-506.  doi: 10.1215/S0012-7094-85-05224-X.  Google Scholar

[13]

A. S. Eddington, The dynamics of a globular stellar system, Monthly Notices Roy. Astronom. Soc., 75 (1915), 366-376.   Google Scholar

[14]

M. Franca, Some results on the m-Laplace equations with two growth terms, J. Differential Equations, 17 (2005), 391-425.  doi: 10.1007/s10884-005-4572-5.  Google Scholar

[15]

A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, New Jersey, 1964.  Google Scholar

[16]

H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t = \Delta u+u^{1+\alpha}$, J. Fac. Sci. Univ. Tokyo, 13 (1966), 109-124.   Google Scholar

[17]

B. GidasW.-M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 (1979), 209-243.  doi: 10.1007/BF01221125.  Google Scholar

[18]

C.-F. Gui, On positive entire solutions of the elliptic equation $\Delta u+K(x)u^p = 0$ and its applications to Riemannian geometry, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 225-237.  doi: 10.1017/S0308210500022708.  Google Scholar

[19]

C.-F. Gui, Positive entire solutions of equation $\Delta u+f(x, u) = 0$, J. Differential Equations, 99 (1992), 245-280.  doi: 10.1016/0022-0396(92)90023-G.  Google Scholar

[20]

C.-F. GuiW.-M. Ni and X.-F. Wang, Further study on a nonlinear heat equation, J. Differential Equations, 169 (2001), 588-613.  doi: 10.1006/jdeq.2000.3909.  Google Scholar

[21]

C.-F. GuiW.-M. Ni and X.-F. Wang, On the stability and instability of positive steady state of a semilinear heat equation in $\mathbb{R}^n$, Comm. Pure Appl. Math., 45 (1992), 1153-1181.  doi: 10.1002/cpa.3160450906.  Google Scholar

[22]

N. Kawano, On bounded entire solutions of semilinear elliptic equations, Hiroshima Math. J., 14 (1984), 125-158.  doi: 10.32917/hmj/1206133151.  Google Scholar

[23]

T. Kusano and M. Naito, Oscillation theory of entire solutions of second order superlinear elliptic equations, Funkcial. Ekvac., 30 (1987), 269-282.   Google Scholar

[24]

T.-Y. Lee and W.-M. Ni, Global existence, large time behavior and life span of solutions of semilinear parabolic Cauchy problems, Trans. Amer. Math. Soc., 333 (1992), 365-371.  doi: 10.1090/S0002-9947-1992-1057781-6.  Google Scholar

[25]

Y. Li, Asymptotic behavior of positive solutions of equation $\Delta u+K(x)u^p = 0$ in $\mathbb{R}^n$, J. Differential Equations, 95 (1992), 304-330.  doi: 10.1016/0022-0396(92)90034-K.  Google Scholar

[26]

Y. Li and W.-M. Ni, On the asymptotic behavior and radial symmetry of positive solutions of semilinear elliptic equations in $\mathbb{R}^n$ I. Asymptotic behavior, Arch. Rational Mech. Anal., 118 (1992), 195-222.  doi: 10.1007/BF00387895.  Google Scholar

[27]

Y. LiuY. Li and Y. Deng, Separation property of solution for a semilinear elliptic equation, J. Differential Equations, 163 (2000), 381-406.  doi: 10.1006/jdeq.1999.3735.  Google Scholar

[28]

T. Matukuma, Dynamics of globular clusters, Nippon Temmongakkai Yoho, 1 (1930), 68–89 (In Japanese). Google Scholar

[29]

M. Naito, Asymptotic behaviors of solutions of second order differential equations with integral coefficients, Trans. Amer. Math. Soc., 282 (1984), 577-588.  doi: 10.1090/S0002-9947-1984-0732107-9.  Google Scholar

[30]

M. Naito, A note on bounded positive entire solution of semiliner elliptic equations, Hiroshima Math. J., 14 (1984), 211-214.  doi: 10.32917/hmj/1206133156.  Google Scholar

[31]

W.-M. Ni, On the elliptic equation $\Delta u+K(x)u^{\frac{(n+2)}{(n-2)}}=0$, it's generalizations and applications in geometry, Indiana Univ. Math. J., 31 (1982), 493-529.  doi: 10.1512/iumj.1982.31.31040.  Google Scholar

[32]

W.-M. Ni and S. Yotsutani, Semilinear elliptic equations of Matukuma type and related topics, Japan J. Appl. Math., 5 (1988), 1-32.  doi: 10.1007/BF03167899.  Google Scholar

[33]

K. Nishihara, Asymptotic behaviors of solutions of second order differential equations, J. Math. Anal. Appl., 189 (1995), 424-441.  doi: 10.1006/jmaa.1995.1028.  Google Scholar

[34]

P. Polacik and E. Yanagida, A Liouville property and quasiconvergence for a semilinear heat equation, J. Differential Equations, 208 (2005), 194-214.  doi: 10.1016/j.jde.2003.10.019.  Google Scholar

[35]

P. Polacik and E. Yanagida, On bounded and unbounded global solutions of a supercritical semilinear heat equation, Math. Ann., 327 (2003), 745-771.  doi: 10.1007/s00208-003-0469-y.  Google Scholar

[36]

X.-F. Wang, On Cauchy problem for reaction-diffusion equations, Trans. Amer. Math. Soc., 337 (1993), 549-590.  doi: 10.1090/S0002-9947-1993-1153016-5.  Google Scholar

[37]

F. Weissler, Existence and nonexistence of global solution for semilinear heat equation, Israel J. Math., 38 (1981), 29-40.  doi: 10.1007/BF02761845.  Google Scholar

[38]

F. Yang, Entire positive solutions for an inhomogeneous semilinear biharmonic equation, Nonlinear Anal., 70 (2009), 1365-1376.  doi: 10.1016/j.na.2008.02.016.  Google Scholar

[39]

F. Yang and Z. Zhang, On the stability of the positive radial steady states for a semilinear Cauchy problem, Nonlinear Anal., 80 (2013), 109-121.  doi: 10.1016/j.na.2012.11.003.  Google Scholar

[40]

F. Yang and D. Zhang, Separation property of positive radial solutions for a general semilinear elliptic equation, Acta Math. Sci., 31 (2011), 181-193.  doi: 10.1016/S0252-9602(11)60219-1.  Google Scholar

[1]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[2]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[3]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[4]

Norman Noguera, Ademir Pastor. Scattering of radial solutions for quadratic-type Schrödinger systems in dimension five. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021018

[5]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[6]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[7]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[8]

Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020294

[9]

Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020293

[10]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[11]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

[12]

Makram Hamouda, Ahmed Bchatnia, Mohamed Ali Ayadi. Numerical solutions for a Timoshenko-type system with thermoelasticity with second sound. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021001

[13]

Yi Guan, Michal Fečkan, Jinrong Wang. Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1157-1176. doi: 10.3934/dcds.2020313

[14]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[15]

Chaman Kumar. On Milstein-type scheme for SDE driven by Lévy noise with super-linear coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1405-1446. doi: 10.3934/dcdsb.2020167

[16]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[17]

Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318

[18]

Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021028

[19]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

[20]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (244)
  • HTML views (507)
  • Cited by (0)

Other articles
by authors

[Back to Top]