June  2020, 40(6): 3737-3765. doi: 10.3934/dcds.2019230

Finite energy weak solutions of 2d Boussinesq equations with diffusive temperature

1. 

Yau Mathematical Science center, Tsinghua University, Beijing 100084, China

2. 

School of Mathematics Sciences, Shandong University, Jinan 250100, China

3. 

Academy of Mathematic and System Science, CAS; School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China

* Corresponding author: Liqun Zhang

Received  December 2018 Revised  March 2019 Published  June 2019

Fund Project: The first author is supported in part by NSFC Grants 11601258.6. The second author is supported by the fundamental research funds of Shandong university under Grant 11140078614006. The third author is partially supported by the Chinese NSF under Grant 11471320 and 11631008

We show the existence of finite kinetic energy solution with prescribed kinetic energy to the 2d Boussinesq equations with diffusive temperature on torus.

Citation: Tianwen Luo, Tao Tao, Liqun Zhang. Finite energy weak solutions of 2d Boussinesq equations with diffusive temperature. Discrete & Continuous Dynamical Systems, 2020, 40 (6) : 3737-3765. doi: 10.3934/dcds.2019230
References:
[1]

T. Buckmaster, Onsager's conjecture almost everywhere in time, Comm. Math. Phys., 333 (2015), 1175-1198.  doi: 10.1007/s00220-014-2262-z.  Google Scholar

[2]

T. Buckmaster, M. Colombo and V. Vicol, Wild solutions of the Navier-Stokes equations whose singular sets in time have Hausdorff dimension strictly less than 1, preprint, arXiv: 1809.00600. Google Scholar

[3]

T. BuckmasterC. De LellisP. Isett and L. Székelyhidi Jr., Anomalous dissipation for 1/5-Hölder Euler flows, Ann. of. Math., 182 (2015), 127-172.  doi: 10.4007/annals.2015.182.1.3.  Google Scholar

[4]

T. Buckmaster, C. De Lellis and L. Székelyhidi, Jr., Transporting microstructure and dissipative Euler flows, preprint, arXiv: 1302.2825. Google Scholar

[5]

T. BuckmasterC. De Lellis and L. Székelyhidi Jr., Dissipative Euler flows with Onsager-critical spatial regularity, Comm. Pure Appl. Math., 69 (2016), 1613-1670.  doi: 10.1002/cpa.21586.  Google Scholar

[6]

T. BuckmasterC. De LellisL. Székelyhidi Jr. and V. Vicol, Onsager conjecture for admissible weak solution, Comm. Pure Appl. Math., 72 (2019), 229-274.  doi: 10.1002/cpa.21781.  Google Scholar

[7]

T. Buckmaster, Shkoller and V. Vicol, Nonuniqueness of weak solutions to SQG equation, to appear in Comm. Pure Appl. Math. Google Scholar

[8]

T. Buckmaster and V. Vicol, Nonuniqueness of weak solutions to Navier-Stokes equation, Ann. of Math., 189 (2019), 101-144.  doi: 10.4007/annals.2019.189.1.3.  Google Scholar

[9]

D. Chae, Global regularity for the 2-D Boussinesq equation with partial viscous terms, Adv. Math., 203 (2006), 497-513.  doi: 10.1016/j.aim.2005.05.001.  Google Scholar

[10]

A. CheskidovP. ConstantinS. Friedlander and R. Shvydkoy, Energy conservation and Onsager's conjecture for the Euler equations, Nonlinearity, 21 (2008), 1233-1252.  doi: 10.1088/0951-7715/21/6/005.  Google Scholar

[11]

A. Choffrut, H-principles for the incompressible Euler equations, Arch. Ration. Mech. Anal., 210 (2013), 133-163.  doi: 10.1007/s00205-013-0639-3.  Google Scholar

[12]

P. ConstantinE. W and E. S. Titi, Onsager's conjecture on the energy conservation for solutions of Euler's equation, Comm. Math. Phys., 165 (1994), 207-209.  doi: 10.1007/BF02099744.  Google Scholar

[13]

S. Daneri, Cauchy problem for dissipative Hölder solutions to the incompressible Euler equations, Comm. Math. Phy., 329 (2014), 745-786.  doi: 10.1007/s00220-014-1973-5.  Google Scholar

[14]

S. Daneri and L. Székelyhidi Jr., Non-uniqueness and h-principle for Hölder continuous weak solution of Euler equation, Arch. Ration. Mech. Anal., 224 (2017), 471-514.  doi: 10.1007/s00205-017-1081-8.  Google Scholar

[15]

C. De Lellis and L. Székelyhidi Jr., The Euler equation as a differential inclusion, Ann. of Math., 170 (2009), 1417-1436.  doi: 10.4007/annals.2009.170.1417.  Google Scholar

[16]

C. De Lellis and L. Székelyhidi Jr., On admissibility criteria for weak solutions of the Euler equations, Arch. Ration. Mech. Anal., 195 (2010), 225-260.  doi: 10.1007/s00205-008-0201-x.  Google Scholar

[17]

C. De Lellis and L. Székelyhidi Jr., Dissipative continuous Euler flows, Invent. Math., 193 (2013), 377-407.  doi: 10.1007/s00222-012-0429-9.  Google Scholar

[18]

C. De Lellis and L. Székelyhidi Jr., Dissipative Euler flows and Onsager's conjecture, Jour. Eur. Math. Soc., 16 (2014), 1467-1505.  doi: 10.4171/JEMS/466.  Google Scholar

[19]

J. Duchon and R. Raoul, Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations, Nonlinearity, 13 (2000), 249-255.  doi: 10.1088/0951-7715/13/1/312.  Google Scholar

[20]

T. Hou and C. Li, Global well-posedness of the viscous Boussinesq equations, DCDS, Series A, 12 (2005), 1-12.  doi: 10.3934/dcds.2005.12.1.  Google Scholar

[21]

P. Isett and S.-J. Oh, A heat flow approach to Onsager's conjecture for the Euler equations on manifolds, Trans. Amer. Math. Soc., 368 (2016), 6519-6537.  doi: 10.1090/tran/6549.  Google Scholar

[22]

P. Isett and S.-J. Oh, On nonperiodic Euler flows with Hölder regularity, Arch. Ration. Mech. Anal., 221 (2016), 725-804.  doi: 10.1007/s00205-016-0973-3.  Google Scholar

[23]

P. Isett, Hölder continuous Euler flows in three dimensions with compact support in time, preprint, arXiv: 1211.4065. doi: 10.1515/9781400885428.  Google Scholar

[24]

P. Isett, A proof of Onsager's conjecture, Ann. of. Math., 188 (2018), 871-963.  doi: 10.4007/annals.2018.188.3.4.  Google Scholar

[25]

P. Isett, On the endpoint regularity in Onsager's conjecture, preprint, arXiv: 1706.01549 Google Scholar

[26]

P. Isett and V. Vicol, H ölder continuous solutions of active scalar equations, Ann. of. PDE. doi: 10.1007/s40818-015-0002-0.  Google Scholar

[27]

T. Luo and Titi, Non-uniqueness of Weak Solutions to Hyperviscous Navier-Stokes Equations - On Sharpness of J.-L. Lions Exponent, preprint, arXiv: 1808.07595. Google Scholar

[28]

T. Luo, T. Tao and L. Zhang, Hölder continuous soltion of 2d Boussinesq equation with diffusive temperture, preprint, arXiv: 1901.10071. Google Scholar

[29]

T. Luo and Z. Xin, Hölder continuous solutions to the 3d Prandtl system, preprint, arXiv: 1804.04285. Google Scholar

[30]

X. Luo, Stationary solution and nonuniquenes of weak solution for the Navier-Stokes euation on high dimensions, preprint, arXiv: 1807.09318. Google Scholar

[31]

A. Majda, Introduction to PDEs and Waves for the Atmosphere and Ocean, Courant Lecture Notes in Mathematics, Vol. 9. AMS/CIMS, 2003. doi: 10.1090/cln/009.  Google Scholar

[32]

S. Modena and L. Székelyhidi, Jr., Non-uniqueness for the transport equation with Sobolev vector fields, to appear in Ann. PDE. doi: 10.1007/s40818-018-0056-x.  Google Scholar

[33]

S. Modena and L. Székelyhidi, Jr., Non-Renormalized solution to the continuity equation, preprint, arXiv: 1806.09145. Google Scholar

[34]

L. Onsager, Statistical hydrodynamics, Nuovo Cimento, 9 (1949), 279-287.  doi: 10.1007/BF02780991.  Google Scholar

[35] J. Pedlosky, Geophysical Fluid Dynamics, Springer, New York, 1987.   Google Scholar
[36]

V. Scheffer, An inviscid flow with compact support in space-time, J. Geom. Anal., 3 (1993), 343-401.  doi: 10.1007/BF02921318.  Google Scholar

[37]

A. Shnirelman, Weak solution with decreasing energy of incompressible Euler equations, Comm. Math. Phys., 210 (2000), 541-603.  doi: 10.1007/s002200050791.  Google Scholar

[38]

A. Shnirelman, On the nonuniqueness of weak solution of Euler equation, Comm. Pure Appl. Math., 50 (1997), 1261-1286.  doi: 10.1002/(SICI)1097-0312(199712)50:12<1261::AID-CPA3>3.0.CO;2-6.  Google Scholar

[39]

R. Shvydkoy, Convex integration for a class of active scalar equations, J. Amer. Math. Soc., 24 (2011), 1159-1174.  doi: 10.1090/S0894-0347-2011-00705-4.  Google Scholar

[40]

R. Shvydkoy, Lectures on the Onsager conjecture, DCDS, Series S, 3 (2010), 473-496.  doi: 10.3934/dcdss.2010.3.473.  Google Scholar

[41]

L. Székelyhidi, Jr., From Isometric Embeddings to Turbulence, HCDTE lecture notes. Part Ⅱ. Nonlinear hyperbolic PDEs, dispersive and transport equations, 7: 63, 2012. Google Scholar

[42]

T. Tao and L. Zhang, On the continuous periodic weak solution of Boussinesq equations, SIAM, J. Math. Anal., 50 (2018), 1120-1162.  doi: 10.1137/17M1115526.  Google Scholar

[43]

T. Tao and L. Zhang, Hölder continuous solution of Boussinesq equations with compact support, J. Funct. Anal., 272 (2017), 4334-4402.  doi: 10.1016/j.jfa.2017.01.013.  Google Scholar

[44]

T. Tao and L. Zhang, Hölder continuous periodic solution of Boussinesq equations with partial viscosity, Calc. Var. Partial Differential Equations. doi: 10.1007/s00526-018-1337-7.  Google Scholar

show all references

References:
[1]

T. Buckmaster, Onsager's conjecture almost everywhere in time, Comm. Math. Phys., 333 (2015), 1175-1198.  doi: 10.1007/s00220-014-2262-z.  Google Scholar

[2]

T. Buckmaster, M. Colombo and V. Vicol, Wild solutions of the Navier-Stokes equations whose singular sets in time have Hausdorff dimension strictly less than 1, preprint, arXiv: 1809.00600. Google Scholar

[3]

T. BuckmasterC. De LellisP. Isett and L. Székelyhidi Jr., Anomalous dissipation for 1/5-Hölder Euler flows, Ann. of. Math., 182 (2015), 127-172.  doi: 10.4007/annals.2015.182.1.3.  Google Scholar

[4]

T. Buckmaster, C. De Lellis and L. Székelyhidi, Jr., Transporting microstructure and dissipative Euler flows, preprint, arXiv: 1302.2825. Google Scholar

[5]

T. BuckmasterC. De Lellis and L. Székelyhidi Jr., Dissipative Euler flows with Onsager-critical spatial regularity, Comm. Pure Appl. Math., 69 (2016), 1613-1670.  doi: 10.1002/cpa.21586.  Google Scholar

[6]

T. BuckmasterC. De LellisL. Székelyhidi Jr. and V. Vicol, Onsager conjecture for admissible weak solution, Comm. Pure Appl. Math., 72 (2019), 229-274.  doi: 10.1002/cpa.21781.  Google Scholar

[7]

T. Buckmaster, Shkoller and V. Vicol, Nonuniqueness of weak solutions to SQG equation, to appear in Comm. Pure Appl. Math. Google Scholar

[8]

T. Buckmaster and V. Vicol, Nonuniqueness of weak solutions to Navier-Stokes equation, Ann. of Math., 189 (2019), 101-144.  doi: 10.4007/annals.2019.189.1.3.  Google Scholar

[9]

D. Chae, Global regularity for the 2-D Boussinesq equation with partial viscous terms, Adv. Math., 203 (2006), 497-513.  doi: 10.1016/j.aim.2005.05.001.  Google Scholar

[10]

A. CheskidovP. ConstantinS. Friedlander and R. Shvydkoy, Energy conservation and Onsager's conjecture for the Euler equations, Nonlinearity, 21 (2008), 1233-1252.  doi: 10.1088/0951-7715/21/6/005.  Google Scholar

[11]

A. Choffrut, H-principles for the incompressible Euler equations, Arch. Ration. Mech. Anal., 210 (2013), 133-163.  doi: 10.1007/s00205-013-0639-3.  Google Scholar

[12]

P. ConstantinE. W and E. S. Titi, Onsager's conjecture on the energy conservation for solutions of Euler's equation, Comm. Math. Phys., 165 (1994), 207-209.  doi: 10.1007/BF02099744.  Google Scholar

[13]

S. Daneri, Cauchy problem for dissipative Hölder solutions to the incompressible Euler equations, Comm. Math. Phy., 329 (2014), 745-786.  doi: 10.1007/s00220-014-1973-5.  Google Scholar

[14]

S. Daneri and L. Székelyhidi Jr., Non-uniqueness and h-principle for Hölder continuous weak solution of Euler equation, Arch. Ration. Mech. Anal., 224 (2017), 471-514.  doi: 10.1007/s00205-017-1081-8.  Google Scholar

[15]

C. De Lellis and L. Székelyhidi Jr., The Euler equation as a differential inclusion, Ann. of Math., 170 (2009), 1417-1436.  doi: 10.4007/annals.2009.170.1417.  Google Scholar

[16]

C. De Lellis and L. Székelyhidi Jr., On admissibility criteria for weak solutions of the Euler equations, Arch. Ration. Mech. Anal., 195 (2010), 225-260.  doi: 10.1007/s00205-008-0201-x.  Google Scholar

[17]

C. De Lellis and L. Székelyhidi Jr., Dissipative continuous Euler flows, Invent. Math., 193 (2013), 377-407.  doi: 10.1007/s00222-012-0429-9.  Google Scholar

[18]

C. De Lellis and L. Székelyhidi Jr., Dissipative Euler flows and Onsager's conjecture, Jour. Eur. Math. Soc., 16 (2014), 1467-1505.  doi: 10.4171/JEMS/466.  Google Scholar

[19]

J. Duchon and R. Raoul, Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations, Nonlinearity, 13 (2000), 249-255.  doi: 10.1088/0951-7715/13/1/312.  Google Scholar

[20]

T. Hou and C. Li, Global well-posedness of the viscous Boussinesq equations, DCDS, Series A, 12 (2005), 1-12.  doi: 10.3934/dcds.2005.12.1.  Google Scholar

[21]

P. Isett and S.-J. Oh, A heat flow approach to Onsager's conjecture for the Euler equations on manifolds, Trans. Amer. Math. Soc., 368 (2016), 6519-6537.  doi: 10.1090/tran/6549.  Google Scholar

[22]

P. Isett and S.-J. Oh, On nonperiodic Euler flows with Hölder regularity, Arch. Ration. Mech. Anal., 221 (2016), 725-804.  doi: 10.1007/s00205-016-0973-3.  Google Scholar

[23]

P. Isett, Hölder continuous Euler flows in three dimensions with compact support in time, preprint, arXiv: 1211.4065. doi: 10.1515/9781400885428.  Google Scholar

[24]

P. Isett, A proof of Onsager's conjecture, Ann. of. Math., 188 (2018), 871-963.  doi: 10.4007/annals.2018.188.3.4.  Google Scholar

[25]

P. Isett, On the endpoint regularity in Onsager's conjecture, preprint, arXiv: 1706.01549 Google Scholar

[26]

P. Isett and V. Vicol, H ölder continuous solutions of active scalar equations, Ann. of. PDE. doi: 10.1007/s40818-015-0002-0.  Google Scholar

[27]

T. Luo and Titi, Non-uniqueness of Weak Solutions to Hyperviscous Navier-Stokes Equations - On Sharpness of J.-L. Lions Exponent, preprint, arXiv: 1808.07595. Google Scholar

[28]

T. Luo, T. Tao and L. Zhang, Hölder continuous soltion of 2d Boussinesq equation with diffusive temperture, preprint, arXiv: 1901.10071. Google Scholar

[29]

T. Luo and Z. Xin, Hölder continuous solutions to the 3d Prandtl system, preprint, arXiv: 1804.04285. Google Scholar

[30]

X. Luo, Stationary solution and nonuniquenes of weak solution for the Navier-Stokes euation on high dimensions, preprint, arXiv: 1807.09318. Google Scholar

[31]

A. Majda, Introduction to PDEs and Waves for the Atmosphere and Ocean, Courant Lecture Notes in Mathematics, Vol. 9. AMS/CIMS, 2003. doi: 10.1090/cln/009.  Google Scholar

[32]

S. Modena and L. Székelyhidi, Jr., Non-uniqueness for the transport equation with Sobolev vector fields, to appear in Ann. PDE. doi: 10.1007/s40818-018-0056-x.  Google Scholar

[33]

S. Modena and L. Székelyhidi, Jr., Non-Renormalized solution to the continuity equation, preprint, arXiv: 1806.09145. Google Scholar

[34]

L. Onsager, Statistical hydrodynamics, Nuovo Cimento, 9 (1949), 279-287.  doi: 10.1007/BF02780991.  Google Scholar

[35] J. Pedlosky, Geophysical Fluid Dynamics, Springer, New York, 1987.   Google Scholar
[36]

V. Scheffer, An inviscid flow with compact support in space-time, J. Geom. Anal., 3 (1993), 343-401.  doi: 10.1007/BF02921318.  Google Scholar

[37]

A. Shnirelman, Weak solution with decreasing energy of incompressible Euler equations, Comm. Math. Phys., 210 (2000), 541-603.  doi: 10.1007/s002200050791.  Google Scholar

[38]

A. Shnirelman, On the nonuniqueness of weak solution of Euler equation, Comm. Pure Appl. Math., 50 (1997), 1261-1286.  doi: 10.1002/(SICI)1097-0312(199712)50:12<1261::AID-CPA3>3.0.CO;2-6.  Google Scholar

[39]

R. Shvydkoy, Convex integration for a class of active scalar equations, J. Amer. Math. Soc., 24 (2011), 1159-1174.  doi: 10.1090/S0894-0347-2011-00705-4.  Google Scholar

[40]

R. Shvydkoy, Lectures on the Onsager conjecture, DCDS, Series S, 3 (2010), 473-496.  doi: 10.3934/dcdss.2010.3.473.  Google Scholar

[41]

L. Székelyhidi, Jr., From Isometric Embeddings to Turbulence, HCDTE lecture notes. Part Ⅱ. Nonlinear hyperbolic PDEs, dispersive and transport equations, 7: 63, 2012. Google Scholar

[42]

T. Tao and L. Zhang, On the continuous periodic weak solution of Boussinesq equations, SIAM, J. Math. Anal., 50 (2018), 1120-1162.  doi: 10.1137/17M1115526.  Google Scholar

[43]

T. Tao and L. Zhang, Hölder continuous solution of Boussinesq equations with compact support, J. Funct. Anal., 272 (2017), 4334-4402.  doi: 10.1016/j.jfa.2017.01.013.  Google Scholar

[44]

T. Tao and L. Zhang, Hölder continuous periodic solution of Boussinesq equations with partial viscosity, Calc. Var. Partial Differential Equations. doi: 10.1007/s00526-018-1337-7.  Google Scholar

[1]

Guodong Wang, Bijun Zuo. Energy equality for weak solutions to the 3D magnetohydrodynamic equations in a bounded domain. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021078

[2]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[3]

Monica Conti, Lorenzo Liverani, Vittorino Pata. A note on the energy transfer in coupled differential systems. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021042

[4]

Kamel Hamdache, Djamila Hamroun. Macroscopic limit of the kinetic Bloch equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021015

[5]

Filippo Giuliani. Transfers of energy through fast diffusion channels in some resonant PDEs on the circle. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021068

[6]

Xinqun Mei, Jundong Zhou. The interior gradient estimate of prescribed Hessian quotient curvature equation in the hyperbolic space. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1187-1198. doi: 10.3934/cpaa.2021012

[7]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, 2021, 14 (2) : 199-209. doi: 10.3934/krm.2021002

[8]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[9]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[10]

Zhi-Min Chen, Philip A. Wilson. Stability of oscillatory gravity wave trains with energy dissipation and Benjamin-Feir instability. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2329-2341. doi: 10.3934/dcdsb.2012.17.2329

[11]

Huan Zhang, Jun Zhou. Asymptotic behaviors of solutions to a sixth-order Boussinesq equation with logarithmic nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021034

[12]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[13]

Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021019

[14]

Meng-Xue Chang, Bang-Sheng Han, Xiao-Ming Fan. Global dynamics of the solution for a bistable reaction diffusion equation with nonlocal effect. Electronic Research Archive, , () : -. doi: 10.3934/era.2021024

[15]

Shoichi Hasegawa, Norihisa Ikoma, Tatsuki Kawakami. On weak solutions to a fractional Hardy–Hénon equation: Part I: Nonexistence. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021033

[16]

Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025

[17]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[18]

Prasanta Kumar Barik, Ankik Kumar Giri, Rajesh Kumar. Mass-conserving weak solutions to the coagulation and collisional breakage equation with singular rates. Kinetic & Related Models, 2021, 14 (2) : 389-406. doi: 10.3934/krm.2021009

[19]

Xiaozhong Yang, Xinlong Liu. Numerical analysis of two new finite difference methods for time-fractional telegraph equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3921-3942. doi: 10.3934/dcdsb.2020269

[20]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (223)
  • HTML views (485)
  • Cited by (0)

Other articles
by authors

[Back to Top]