June  2020, 40(6): 3737-3765. doi: 10.3934/dcds.2019230

Finite energy weak solutions of 2d Boussinesq equations with diffusive temperature

1. 

Yau Mathematical Science center, Tsinghua University, Beijing 100084, China

2. 

School of Mathematics Sciences, Shandong University, Jinan 250100, China

3. 

Academy of Mathematic and System Science, CAS; School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China

* Corresponding author: Liqun Zhang

Received  December 2018 Revised  March 2019 Published  June 2019

Fund Project: The first author is supported in part by NSFC Grants 11601258.6. The second author is supported by the fundamental research funds of Shandong university under Grant 11140078614006. The third author is partially supported by the Chinese NSF under Grant 11471320 and 11631008

We show the existence of finite kinetic energy solution with prescribed kinetic energy to the 2d Boussinesq equations with diffusive temperature on torus.

Citation: Tianwen Luo, Tao Tao, Liqun Zhang. Finite energy weak solutions of 2d Boussinesq equations with diffusive temperature. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3737-3765. doi: 10.3934/dcds.2019230
References:
[1]

T. Buckmaster, Onsager's conjecture almost everywhere in time, Comm. Math. Phys., 333 (2015), 1175-1198.  doi: 10.1007/s00220-014-2262-z.  Google Scholar

[2]

T. Buckmaster, M. Colombo and V. Vicol, Wild solutions of the Navier-Stokes equations whose singular sets in time have Hausdorff dimension strictly less than 1, preprint, arXiv: 1809.00600. Google Scholar

[3]

T. BuckmasterC. De LellisP. Isett and L. Székelyhidi Jr., Anomalous dissipation for 1/5-Hölder Euler flows, Ann. of. Math., 182 (2015), 127-172.  doi: 10.4007/annals.2015.182.1.3.  Google Scholar

[4]

T. Buckmaster, C. De Lellis and L. Székelyhidi, Jr., Transporting microstructure and dissipative Euler flows, preprint, arXiv: 1302.2825. Google Scholar

[5]

T. BuckmasterC. De Lellis and L. Székelyhidi Jr., Dissipative Euler flows with Onsager-critical spatial regularity, Comm. Pure Appl. Math., 69 (2016), 1613-1670.  doi: 10.1002/cpa.21586.  Google Scholar

[6]

T. BuckmasterC. De LellisL. Székelyhidi Jr. and V. Vicol, Onsager conjecture for admissible weak solution, Comm. Pure Appl. Math., 72 (2019), 229-274.  doi: 10.1002/cpa.21781.  Google Scholar

[7]

T. Buckmaster, Shkoller and V. Vicol, Nonuniqueness of weak solutions to SQG equation, to appear in Comm. Pure Appl. Math. Google Scholar

[8]

T. Buckmaster and V. Vicol, Nonuniqueness of weak solutions to Navier-Stokes equation, Ann. of Math., 189 (2019), 101-144.  doi: 10.4007/annals.2019.189.1.3.  Google Scholar

[9]

D. Chae, Global regularity for the 2-D Boussinesq equation with partial viscous terms, Adv. Math., 203 (2006), 497-513.  doi: 10.1016/j.aim.2005.05.001.  Google Scholar

[10]

A. CheskidovP. ConstantinS. Friedlander and R. Shvydkoy, Energy conservation and Onsager's conjecture for the Euler equations, Nonlinearity, 21 (2008), 1233-1252.  doi: 10.1088/0951-7715/21/6/005.  Google Scholar

[11]

A. Choffrut, H-principles for the incompressible Euler equations, Arch. Ration. Mech. Anal., 210 (2013), 133-163.  doi: 10.1007/s00205-013-0639-3.  Google Scholar

[12]

P. ConstantinE. W and E. S. Titi, Onsager's conjecture on the energy conservation for solutions of Euler's equation, Comm. Math. Phys., 165 (1994), 207-209.  doi: 10.1007/BF02099744.  Google Scholar

[13]

S. Daneri, Cauchy problem for dissipative Hölder solutions to the incompressible Euler equations, Comm. Math. Phy., 329 (2014), 745-786.  doi: 10.1007/s00220-014-1973-5.  Google Scholar

[14]

S. Daneri and L. Székelyhidi Jr., Non-uniqueness and h-principle for Hölder continuous weak solution of Euler equation, Arch. Ration. Mech. Anal., 224 (2017), 471-514.  doi: 10.1007/s00205-017-1081-8.  Google Scholar

[15]

C. De Lellis and L. Székelyhidi Jr., The Euler equation as a differential inclusion, Ann. of Math., 170 (2009), 1417-1436.  doi: 10.4007/annals.2009.170.1417.  Google Scholar

[16]

C. De Lellis and L. Székelyhidi Jr., On admissibility criteria for weak solutions of the Euler equations, Arch. Ration. Mech. Anal., 195 (2010), 225-260.  doi: 10.1007/s00205-008-0201-x.  Google Scholar

[17]

C. De Lellis and L. Székelyhidi Jr., Dissipative continuous Euler flows, Invent. Math., 193 (2013), 377-407.  doi: 10.1007/s00222-012-0429-9.  Google Scholar

[18]

C. De Lellis and L. Székelyhidi Jr., Dissipative Euler flows and Onsager's conjecture, Jour. Eur. Math. Soc., 16 (2014), 1467-1505.  doi: 10.4171/JEMS/466.  Google Scholar

[19]

J. Duchon and R. Raoul, Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations, Nonlinearity, 13 (2000), 249-255.  doi: 10.1088/0951-7715/13/1/312.  Google Scholar

[20]

T. Hou and C. Li, Global well-posedness of the viscous Boussinesq equations, DCDS, Series A, 12 (2005), 1-12.  doi: 10.3934/dcds.2005.12.1.  Google Scholar

[21]

P. Isett and S.-J. Oh, A heat flow approach to Onsager's conjecture for the Euler equations on manifolds, Trans. Amer. Math. Soc., 368 (2016), 6519-6537.  doi: 10.1090/tran/6549.  Google Scholar

[22]

P. Isett and S.-J. Oh, On nonperiodic Euler flows with Hölder regularity, Arch. Ration. Mech. Anal., 221 (2016), 725-804.  doi: 10.1007/s00205-016-0973-3.  Google Scholar

[23]

P. Isett, Hölder continuous Euler flows in three dimensions with compact support in time, preprint, arXiv: 1211.4065. doi: 10.1515/9781400885428.  Google Scholar

[24]

P. Isett, A proof of Onsager's conjecture, Ann. of. Math., 188 (2018), 871-963.  doi: 10.4007/annals.2018.188.3.4.  Google Scholar

[25]

P. Isett, On the endpoint regularity in Onsager's conjecture, preprint, arXiv: 1706.01549 Google Scholar

[26]

P. Isett and V. Vicol, H ölder continuous solutions of active scalar equations, Ann. of. PDE. doi: 10.1007/s40818-015-0002-0.  Google Scholar

[27]

T. Luo and Titi, Non-uniqueness of Weak Solutions to Hyperviscous Navier-Stokes Equations - On Sharpness of J.-L. Lions Exponent, preprint, arXiv: 1808.07595. Google Scholar

[28]

T. Luo, T. Tao and L. Zhang, Hölder continuous soltion of 2d Boussinesq equation with diffusive temperture, preprint, arXiv: 1901.10071. Google Scholar

[29]

T. Luo and Z. Xin, Hölder continuous solutions to the 3d Prandtl system, preprint, arXiv: 1804.04285. Google Scholar

[30]

X. Luo, Stationary solution and nonuniquenes of weak solution for the Navier-Stokes euation on high dimensions, preprint, arXiv: 1807.09318. Google Scholar

[31]

A. Majda, Introduction to PDEs and Waves for the Atmosphere and Ocean, Courant Lecture Notes in Mathematics, Vol. 9. AMS/CIMS, 2003. doi: 10.1090/cln/009.  Google Scholar

[32]

S. Modena and L. Székelyhidi, Jr., Non-uniqueness for the transport equation with Sobolev vector fields, to appear in Ann. PDE. doi: 10.1007/s40818-018-0056-x.  Google Scholar

[33]

S. Modena and L. Székelyhidi, Jr., Non-Renormalized solution to the continuity equation, preprint, arXiv: 1806.09145. Google Scholar

[34]

L. Onsager, Statistical hydrodynamics, Nuovo Cimento, 9 (1949), 279-287.  doi: 10.1007/BF02780991.  Google Scholar

[35] J. Pedlosky, Geophysical Fluid Dynamics, Springer, New York, 1987.   Google Scholar
[36]

V. Scheffer, An inviscid flow with compact support in space-time, J. Geom. Anal., 3 (1993), 343-401.  doi: 10.1007/BF02921318.  Google Scholar

[37]

A. Shnirelman, Weak solution with decreasing energy of incompressible Euler equations, Comm. Math. Phys., 210 (2000), 541-603.  doi: 10.1007/s002200050791.  Google Scholar

[38]

A. Shnirelman, On the nonuniqueness of weak solution of Euler equation, Comm. Pure Appl. Math., 50 (1997), 1261-1286.  doi: 10.1002/(SICI)1097-0312(199712)50:12<1261::AID-CPA3>3.0.CO;2-6.  Google Scholar

[39]

R. Shvydkoy, Convex integration for a class of active scalar equations, J. Amer. Math. Soc., 24 (2011), 1159-1174.  doi: 10.1090/S0894-0347-2011-00705-4.  Google Scholar

[40]

R. Shvydkoy, Lectures on the Onsager conjecture, DCDS, Series S, 3 (2010), 473-496.  doi: 10.3934/dcdss.2010.3.473.  Google Scholar

[41]

L. Székelyhidi, Jr., From Isometric Embeddings to Turbulence, HCDTE lecture notes. Part Ⅱ. Nonlinear hyperbolic PDEs, dispersive and transport equations, 7: 63, 2012. Google Scholar

[42]

T. Tao and L. Zhang, On the continuous periodic weak solution of Boussinesq equations, SIAM, J. Math. Anal., 50 (2018), 1120-1162.  doi: 10.1137/17M1115526.  Google Scholar

[43]

T. Tao and L. Zhang, Hölder continuous solution of Boussinesq equations with compact support, J. Funct. Anal., 272 (2017), 4334-4402.  doi: 10.1016/j.jfa.2017.01.013.  Google Scholar

[44]

T. Tao and L. Zhang, Hölder continuous periodic solution of Boussinesq equations with partial viscosity, Calc. Var. Partial Differential Equations. doi: 10.1007/s00526-018-1337-7.  Google Scholar

show all references

References:
[1]

T. Buckmaster, Onsager's conjecture almost everywhere in time, Comm. Math. Phys., 333 (2015), 1175-1198.  doi: 10.1007/s00220-014-2262-z.  Google Scholar

[2]

T. Buckmaster, M. Colombo and V. Vicol, Wild solutions of the Navier-Stokes equations whose singular sets in time have Hausdorff dimension strictly less than 1, preprint, arXiv: 1809.00600. Google Scholar

[3]

T. BuckmasterC. De LellisP. Isett and L. Székelyhidi Jr., Anomalous dissipation for 1/5-Hölder Euler flows, Ann. of. Math., 182 (2015), 127-172.  doi: 10.4007/annals.2015.182.1.3.  Google Scholar

[4]

T. Buckmaster, C. De Lellis and L. Székelyhidi, Jr., Transporting microstructure and dissipative Euler flows, preprint, arXiv: 1302.2825. Google Scholar

[5]

T. BuckmasterC. De Lellis and L. Székelyhidi Jr., Dissipative Euler flows with Onsager-critical spatial regularity, Comm. Pure Appl. Math., 69 (2016), 1613-1670.  doi: 10.1002/cpa.21586.  Google Scholar

[6]

T. BuckmasterC. De LellisL. Székelyhidi Jr. and V. Vicol, Onsager conjecture for admissible weak solution, Comm. Pure Appl. Math., 72 (2019), 229-274.  doi: 10.1002/cpa.21781.  Google Scholar

[7]

T. Buckmaster, Shkoller and V. Vicol, Nonuniqueness of weak solutions to SQG equation, to appear in Comm. Pure Appl. Math. Google Scholar

[8]

T. Buckmaster and V. Vicol, Nonuniqueness of weak solutions to Navier-Stokes equation, Ann. of Math., 189 (2019), 101-144.  doi: 10.4007/annals.2019.189.1.3.  Google Scholar

[9]

D. Chae, Global regularity for the 2-D Boussinesq equation with partial viscous terms, Adv. Math., 203 (2006), 497-513.  doi: 10.1016/j.aim.2005.05.001.  Google Scholar

[10]

A. CheskidovP. ConstantinS. Friedlander and R. Shvydkoy, Energy conservation and Onsager's conjecture for the Euler equations, Nonlinearity, 21 (2008), 1233-1252.  doi: 10.1088/0951-7715/21/6/005.  Google Scholar

[11]

A. Choffrut, H-principles for the incompressible Euler equations, Arch. Ration. Mech. Anal., 210 (2013), 133-163.  doi: 10.1007/s00205-013-0639-3.  Google Scholar

[12]

P. ConstantinE. W and E. S. Titi, Onsager's conjecture on the energy conservation for solutions of Euler's equation, Comm. Math. Phys., 165 (1994), 207-209.  doi: 10.1007/BF02099744.  Google Scholar

[13]

S. Daneri, Cauchy problem for dissipative Hölder solutions to the incompressible Euler equations, Comm. Math. Phy., 329 (2014), 745-786.  doi: 10.1007/s00220-014-1973-5.  Google Scholar

[14]

S. Daneri and L. Székelyhidi Jr., Non-uniqueness and h-principle for Hölder continuous weak solution of Euler equation, Arch. Ration. Mech. Anal., 224 (2017), 471-514.  doi: 10.1007/s00205-017-1081-8.  Google Scholar

[15]

C. De Lellis and L. Székelyhidi Jr., The Euler equation as a differential inclusion, Ann. of Math., 170 (2009), 1417-1436.  doi: 10.4007/annals.2009.170.1417.  Google Scholar

[16]

C. De Lellis and L. Székelyhidi Jr., On admissibility criteria for weak solutions of the Euler equations, Arch. Ration. Mech. Anal., 195 (2010), 225-260.  doi: 10.1007/s00205-008-0201-x.  Google Scholar

[17]

C. De Lellis and L. Székelyhidi Jr., Dissipative continuous Euler flows, Invent. Math., 193 (2013), 377-407.  doi: 10.1007/s00222-012-0429-9.  Google Scholar

[18]

C. De Lellis and L. Székelyhidi Jr., Dissipative Euler flows and Onsager's conjecture, Jour. Eur. Math. Soc., 16 (2014), 1467-1505.  doi: 10.4171/JEMS/466.  Google Scholar

[19]

J. Duchon and R. Raoul, Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations, Nonlinearity, 13 (2000), 249-255.  doi: 10.1088/0951-7715/13/1/312.  Google Scholar

[20]

T. Hou and C. Li, Global well-posedness of the viscous Boussinesq equations, DCDS, Series A, 12 (2005), 1-12.  doi: 10.3934/dcds.2005.12.1.  Google Scholar

[21]

P. Isett and S.-J. Oh, A heat flow approach to Onsager's conjecture for the Euler equations on manifolds, Trans. Amer. Math. Soc., 368 (2016), 6519-6537.  doi: 10.1090/tran/6549.  Google Scholar

[22]

P. Isett and S.-J. Oh, On nonperiodic Euler flows with Hölder regularity, Arch. Ration. Mech. Anal., 221 (2016), 725-804.  doi: 10.1007/s00205-016-0973-3.  Google Scholar

[23]

P. Isett, Hölder continuous Euler flows in three dimensions with compact support in time, preprint, arXiv: 1211.4065. doi: 10.1515/9781400885428.  Google Scholar

[24]

P. Isett, A proof of Onsager's conjecture, Ann. of. Math., 188 (2018), 871-963.  doi: 10.4007/annals.2018.188.3.4.  Google Scholar

[25]

P. Isett, On the endpoint regularity in Onsager's conjecture, preprint, arXiv: 1706.01549 Google Scholar

[26]

P. Isett and V. Vicol, H ölder continuous solutions of active scalar equations, Ann. of. PDE. doi: 10.1007/s40818-015-0002-0.  Google Scholar

[27]

T. Luo and Titi, Non-uniqueness of Weak Solutions to Hyperviscous Navier-Stokes Equations - On Sharpness of J.-L. Lions Exponent, preprint, arXiv: 1808.07595. Google Scholar

[28]

T. Luo, T. Tao and L. Zhang, Hölder continuous soltion of 2d Boussinesq equation with diffusive temperture, preprint, arXiv: 1901.10071. Google Scholar

[29]

T. Luo and Z. Xin, Hölder continuous solutions to the 3d Prandtl system, preprint, arXiv: 1804.04285. Google Scholar

[30]

X. Luo, Stationary solution and nonuniquenes of weak solution for the Navier-Stokes euation on high dimensions, preprint, arXiv: 1807.09318. Google Scholar

[31]

A. Majda, Introduction to PDEs and Waves for the Atmosphere and Ocean, Courant Lecture Notes in Mathematics, Vol. 9. AMS/CIMS, 2003. doi: 10.1090/cln/009.  Google Scholar

[32]

S. Modena and L. Székelyhidi, Jr., Non-uniqueness for the transport equation with Sobolev vector fields, to appear in Ann. PDE. doi: 10.1007/s40818-018-0056-x.  Google Scholar

[33]

S. Modena and L. Székelyhidi, Jr., Non-Renormalized solution to the continuity equation, preprint, arXiv: 1806.09145. Google Scholar

[34]

L. Onsager, Statistical hydrodynamics, Nuovo Cimento, 9 (1949), 279-287.  doi: 10.1007/BF02780991.  Google Scholar

[35] J. Pedlosky, Geophysical Fluid Dynamics, Springer, New York, 1987.   Google Scholar
[36]

V. Scheffer, An inviscid flow with compact support in space-time, J. Geom. Anal., 3 (1993), 343-401.  doi: 10.1007/BF02921318.  Google Scholar

[37]

A. Shnirelman, Weak solution with decreasing energy of incompressible Euler equations, Comm. Math. Phys., 210 (2000), 541-603.  doi: 10.1007/s002200050791.  Google Scholar

[38]

A. Shnirelman, On the nonuniqueness of weak solution of Euler equation, Comm. Pure Appl. Math., 50 (1997), 1261-1286.  doi: 10.1002/(SICI)1097-0312(199712)50:12<1261::AID-CPA3>3.0.CO;2-6.  Google Scholar

[39]

R. Shvydkoy, Convex integration for a class of active scalar equations, J. Amer. Math. Soc., 24 (2011), 1159-1174.  doi: 10.1090/S0894-0347-2011-00705-4.  Google Scholar

[40]

R. Shvydkoy, Lectures on the Onsager conjecture, DCDS, Series S, 3 (2010), 473-496.  doi: 10.3934/dcdss.2010.3.473.  Google Scholar

[41]

L. Székelyhidi, Jr., From Isometric Embeddings to Turbulence, HCDTE lecture notes. Part Ⅱ. Nonlinear hyperbolic PDEs, dispersive and transport equations, 7: 63, 2012. Google Scholar

[42]

T. Tao and L. Zhang, On the continuous periodic weak solution of Boussinesq equations, SIAM, J. Math. Anal., 50 (2018), 1120-1162.  doi: 10.1137/17M1115526.  Google Scholar

[43]

T. Tao and L. Zhang, Hölder continuous solution of Boussinesq equations with compact support, J. Funct. Anal., 272 (2017), 4334-4402.  doi: 10.1016/j.jfa.2017.01.013.  Google Scholar

[44]

T. Tao and L. Zhang, Hölder continuous periodic solution of Boussinesq equations with partial viscosity, Calc. Var. Partial Differential Equations. doi: 10.1007/s00526-018-1337-7.  Google Scholar

[1]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[2]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[3]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[4]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[5]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[6]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[7]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[8]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[9]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[10]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[11]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[12]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[13]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[14]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[15]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[16]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[17]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[18]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[19]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[20]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (185)
  • HTML views (409)
  • Cited by (0)

Other articles
by authors

[Back to Top]