-
Previous Article
Superfluids passing an obstacle and vortex nucleation
- DCDS Home
- This Issue
-
Next Article
Preface
Minimizers of the $ p $-oscillation functional
1. | Dipartimento di Scienze Statistiche, Università di Padova, Via Battisti 241/243, 35121 Padova, Italy |
2. | Department of Mathematics and Statistics, University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia |
3. | Dipartimento di Matematica, Università di Pisa, Largo Pontecorvo 5, 56127 Pisa, Italy |
4. | Department of Mathematics and Statistics, University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia |
We define a family of functionals, called $ p $-oscillation functionals, that can be interpreted as discrete versions of the classical total variation functional for $ p = 1 $ and of the $ p $-Dirichlet functionals for $ p>1 $. We introduce the notion of minimizers and prove existence of solutions to the Dirichlet problem. Finally we provide a description of Class A minimizers (i.e. minimizers under compact perturbations) in dimension $ 1 $.
References:
[1] |
L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000. |
[2] |
M. Barchiesi, S. H. Kang, T. M. Le, M. Morini and M. Ponsiglione,
A variational model for infinite perimeter segmentations based on Lipschitz level set functions: Denoising while keeping finely oscillatory boundaries, Multiscale Model. Simul., 8 (2010), 1715-1741.
doi: 10.1137/090773659. |
[3] |
H. H. Bauschke and P. L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, With a foreword by Hédy Attouch, Springer, New York, 2011.
doi: 10.1007/978-1-4419-9467-7. |
[4] |
A. Cesaroni, S. Dipierro, M. Novaga and E. Valdinoci, Minimizers for nonlocal perimeters of Minkowski type, Calc. Var. Partial Differential Equations, 57, (2018), Art. 64, 40.
doi: 10.1007/s00526-018-1335-9. |
[5] |
A. Cesaroni and M. Novaga,
Isoperimetric problems for a nonlocal perimeter of Minkowski type, Geom. Flows, 2 (2017), 86-93.
doi: 10.1515/geofl-2017-0003. |
[6] |
A. Chambolle, A. Giacomini and L. Lussardi, Continuous limits of discrete perimeters, M2AN Math. Model. Numer. Anal., 44, (2010), 207–230.
doi: 10.1051/m2an/2009044. |
[7] |
A. Chambolle, S. Lisini and L. Lussardi,
A remark on the anisotropic outer Minkowski content, Adv. Calc. Var., 7 (2014), 241-266.
doi: 10.1515/acv-2013-0103. |
[8] |
A. Chambolle, M. Morini and M. Ponsiglione,
A nonlocal mean curvature flow and its semi-implicit time-discrete approximation, SIAM J. Math. Anal., 44 (2012), 4048-4077.
doi: 10.1137/120863587. |
[9] |
A. Chambolle, M. Morini and M. Ponsiglione,
Nonlocal curvature flows, Arch. Ration. Mech. Anal., 218 (2015), 1263-1329.
doi: 10.1007/s00205-015-0880-z. |
[10] |
R. Courant, Dirichlet's Principle, Conformal Mapping, and Minimal Surfaces, With an appendix by M. Schiffer; Reprint of the 1950 original, Springer-Verlag, New York-Heidelberg, 1977. |
[11] |
S. Dipierro, M. Novaga and E. Valdinoci,
On a Minkowski geometric flow in the plane: Evolution of curves with lack of scale invariance, J. Lond. Math. Soc. (2), 99 (2019), 31-51.
doi: 10.1112/jlms.12162. |
[12] |
M. Novaga and E. Paolini,
Regularity results for some 1-homogeneous functionals, Nonlinear Anal. Real World Appl., 3 (2002), 555-566.
doi: 10.1016/S1468-1218(01)00048-7. |
[13] |
E. Valdinoci,
A fractional framework for perimeters and phase transitions, Milan J. Math., 81 (2013), 1-23.
doi: 10.1007/s00032-013-0199-x. |
show all references
To Luis Caffarelli, on the occasion of his 70th birthday
References:
[1] |
L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000. |
[2] |
M. Barchiesi, S. H. Kang, T. M. Le, M. Morini and M. Ponsiglione,
A variational model for infinite perimeter segmentations based on Lipschitz level set functions: Denoising while keeping finely oscillatory boundaries, Multiscale Model. Simul., 8 (2010), 1715-1741.
doi: 10.1137/090773659. |
[3] |
H. H. Bauschke and P. L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, With a foreword by Hédy Attouch, Springer, New York, 2011.
doi: 10.1007/978-1-4419-9467-7. |
[4] |
A. Cesaroni, S. Dipierro, M. Novaga and E. Valdinoci, Minimizers for nonlocal perimeters of Minkowski type, Calc. Var. Partial Differential Equations, 57, (2018), Art. 64, 40.
doi: 10.1007/s00526-018-1335-9. |
[5] |
A. Cesaroni and M. Novaga,
Isoperimetric problems for a nonlocal perimeter of Minkowski type, Geom. Flows, 2 (2017), 86-93.
doi: 10.1515/geofl-2017-0003. |
[6] |
A. Chambolle, A. Giacomini and L. Lussardi, Continuous limits of discrete perimeters, M2AN Math. Model. Numer. Anal., 44, (2010), 207–230.
doi: 10.1051/m2an/2009044. |
[7] |
A. Chambolle, S. Lisini and L. Lussardi,
A remark on the anisotropic outer Minkowski content, Adv. Calc. Var., 7 (2014), 241-266.
doi: 10.1515/acv-2013-0103. |
[8] |
A. Chambolle, M. Morini and M. Ponsiglione,
A nonlocal mean curvature flow and its semi-implicit time-discrete approximation, SIAM J. Math. Anal., 44 (2012), 4048-4077.
doi: 10.1137/120863587. |
[9] |
A. Chambolle, M. Morini and M. Ponsiglione,
Nonlocal curvature flows, Arch. Ration. Mech. Anal., 218 (2015), 1263-1329.
doi: 10.1007/s00205-015-0880-z. |
[10] |
R. Courant, Dirichlet's Principle, Conformal Mapping, and Minimal Surfaces, With an appendix by M. Schiffer; Reprint of the 1950 original, Springer-Verlag, New York-Heidelberg, 1977. |
[11] |
S. Dipierro, M. Novaga and E. Valdinoci,
On a Minkowski geometric flow in the plane: Evolution of curves with lack of scale invariance, J. Lond. Math. Soc. (2), 99 (2019), 31-51.
doi: 10.1112/jlms.12162. |
[12] |
M. Novaga and E. Paolini,
Regularity results for some 1-homogeneous functionals, Nonlinear Anal. Real World Appl., 3 (2002), 555-566.
doi: 10.1016/S1468-1218(01)00048-7. |
[13] |
E. Valdinoci,
A fractional framework for perimeters and phase transitions, Milan J. Math., 81 (2013), 1-23.
doi: 10.1007/s00032-013-0199-x. |
[1] |
K. D. Chu, D. D. Hai. Positive solutions for the one-dimensional singular superlinear $ p $-Laplacian problem. Communications on Pure and Applied Analysis, 2020, 19 (1) : 241-252. doi: 10.3934/cpaa.2020013 |
[2] |
Florian Krügel. Some properties of minimizers of a variational problem involving the total variation functional. Communications on Pure and Applied Analysis, 2015, 14 (1) : 341-360. doi: 10.3934/cpaa.2015.14.341 |
[3] |
Boya Li, Hongjie Ju, Yannan Liu. A flow method for a generalization of $ L_{p} $ Christofell-Minkowski problem. Communications on Pure and Applied Analysis, 2022, 21 (3) : 785-796. doi: 10.3934/cpaa.2021198 |
[4] |
Min Li, Yishui Wang, Dachuan Xu, Dongmei Zhang. The approximation algorithm based on seeding method for functional $ k $-means problem†. Journal of Industrial and Management Optimization, 2022, 18 (1) : 411-426. doi: 10.3934/jimo.2020160 |
[5] |
Haisheng Tan, Liuyan Liu, Hongyu Liang. Total $\{k\}$-domination in special graphs. Mathematical Foundations of Computing, 2018, 1 (3) : 255-263. doi: 10.3934/mfc.2018011 |
[6] |
Lingyan Cheng, Ruinan Li, Liming Wu. Exponential convergence in the Wasserstein metric $ W_1 $ for one dimensional diffusions. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5131-5148. doi: 10.3934/dcds.2020222 |
[7] |
Dong-Ho Tsai, Chia-Hsing Nien. On the oscillation behavior of solutions to the one-dimensional heat equation. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 4073-4089. doi: 10.3934/dcds.2019164 |
[8] |
Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3211-3240. doi: 10.3934/dcds.2020403 |
[9] |
Junyong Eom, Ryuichi Sato. Large time behavior of ODE type solutions to parabolic $ p $-Laplacian type equations. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4373-4386. doi: 10.3934/cpaa.2020199 |
[10] |
Phuong Le. Symmetry of singular solutions for a weighted Choquard equation involving the fractional $ p $-Laplacian. Communications on Pure and Applied Analysis, 2020, 19 (1) : 527-539. doi: 10.3934/cpaa.2020026 |
[11] |
Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure and Applied Analysis, 2021, 20 (2) : 835-865. doi: 10.3934/cpaa.2020293 |
[12] |
Nicholas J. Kass, Mohammad A. Rammaha. Local and global existence of solutions to a strongly damped wave equation of the $ p $-Laplacian type. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1449-1478. doi: 10.3934/cpaa.2018070 |
[13] |
Nikolay Dimitrov, Stepan Tersian. Existence of homoclinic solutions for a nonlinear fourth order $ p $-Laplacian difference equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 555-567. doi: 10.3934/dcdsb.2019254 |
[14] |
Alfonso Castro, Jorge Cossio, Sigifredo Herrón, Carlos Vélez. Infinitely many radial solutions for a $ p $-Laplacian problem with indefinite weight. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4805-4821. doi: 10.3934/dcds.2021058 |
[15] |
Jian-Guo Liu, Zhaoyun Zhang. Existence of global weak solutions of $ p $-Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 469-486. doi: 10.3934/dcdsb.2021051 |
[16] |
Said Taarabti. Positive solutions for the $ p(x)- $Laplacian : Application of the Nehari method. Discrete and Continuous Dynamical Systems - S, 2022, 15 (1) : 229-243. doi: 10.3934/dcdss.2021029 |
[17] |
Genghong Lin, Zhan Zhou. Homoclinic solutions of discrete $ \phi $-Laplacian equations with mixed nonlinearities. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1723-1747. doi: 10.3934/cpaa.2018082 |
[18] |
Jiaoxiu Ling, Zhan Zhou. Positive solutions of the discrete Robin problem with $ \phi $-Laplacian. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3183-3196. doi: 10.3934/dcdss.2020338 |
[19] |
Niklas Sapountzoglou, Aleksandra Zimmermann. Well-posedness of renormalized solutions for a stochastic $ p $-Laplace equation with $ L^1 $-initial data. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2341-2376. doi: 10.3934/dcds.2020367 |
[20] |
Xuerui Gao, Yanqin Bai, Shu-Cherng Fang, Jian Luo, Qian Li. A new hybrid $ l_p $-$ l_2 $ model for sparse solutions with applications to image processing. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021211 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]