-
Previous Article
Superfluids passing an obstacle and vortex nucleation
- DCDS Home
- This Issue
-
Next Article
Preface
Minimizers of the $ p $-oscillation functional
1. | Dipartimento di Scienze Statistiche, Università di Padova, Via Battisti 241/243, 35121 Padova, Italy |
2. | Department of Mathematics and Statistics, University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia |
3. | Dipartimento di Matematica, Università di Pisa, Largo Pontecorvo 5, 56127 Pisa, Italy |
4. | Department of Mathematics and Statistics, University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia |
We define a family of functionals, called $ p $-oscillation functionals, that can be interpreted as discrete versions of the classical total variation functional for $ p = 1 $ and of the $ p $-Dirichlet functionals for $ p>1 $. We introduce the notion of minimizers and prove existence of solutions to the Dirichlet problem. Finally we provide a description of Class A minimizers (i.e. minimizers under compact perturbations) in dimension $ 1 $.
References:
[1] |
L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000. |
[2] |
M. Barchiesi, S. H. Kang, T. M. Le, M. Morini and M. Ponsiglione,
A variational model for infinite perimeter segmentations based on Lipschitz level set functions: Denoising while keeping finely oscillatory boundaries, Multiscale Model. Simul., 8 (2010), 1715-1741.
doi: 10.1137/090773659. |
[3] |
H. H. Bauschke and P. L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, With a foreword by Hédy Attouch, Springer, New York, 2011.
doi: 10.1007/978-1-4419-9467-7. |
[4] |
A. Cesaroni, S. Dipierro, M. Novaga and E. Valdinoci, Minimizers for nonlocal perimeters of Minkowski type, Calc. Var. Partial Differential Equations, 57, (2018), Art. 64, 40.
doi: 10.1007/s00526-018-1335-9. |
[5] |
A. Cesaroni and M. Novaga,
Isoperimetric problems for a nonlocal perimeter of Minkowski type, Geom. Flows, 2 (2017), 86-93.
doi: 10.1515/geofl-2017-0003. |
[6] |
A. Chambolle, A. Giacomini and L. Lussardi, Continuous limits of discrete perimeters, M2AN Math. Model. Numer. Anal., 44, (2010), 207–230.
doi: 10.1051/m2an/2009044. |
[7] |
A. Chambolle, S. Lisini and L. Lussardi,
A remark on the anisotropic outer Minkowski content, Adv. Calc. Var., 7 (2014), 241-266.
doi: 10.1515/acv-2013-0103. |
[8] |
A. Chambolle, M. Morini and M. Ponsiglione,
A nonlocal mean curvature flow and its semi-implicit time-discrete approximation, SIAM J. Math. Anal., 44 (2012), 4048-4077.
doi: 10.1137/120863587. |
[9] |
A. Chambolle, M. Morini and M. Ponsiglione,
Nonlocal curvature flows, Arch. Ration. Mech. Anal., 218 (2015), 1263-1329.
doi: 10.1007/s00205-015-0880-z. |
[10] |
R. Courant, Dirichlet's Principle, Conformal Mapping, and Minimal Surfaces, With an appendix by M. Schiffer; Reprint of the 1950 original, Springer-Verlag, New York-Heidelberg, 1977. |
[11] |
S. Dipierro, M. Novaga and E. Valdinoci,
On a Minkowski geometric flow in the plane: Evolution of curves with lack of scale invariance, J. Lond. Math. Soc. (2), 99 (2019), 31-51.
doi: 10.1112/jlms.12162. |
[12] |
M. Novaga and E. Paolini,
Regularity results for some 1-homogeneous functionals, Nonlinear Anal. Real World Appl., 3 (2002), 555-566.
doi: 10.1016/S1468-1218(01)00048-7. |
[13] |
E. Valdinoci,
A fractional framework for perimeters and phase transitions, Milan J. Math., 81 (2013), 1-23.
doi: 10.1007/s00032-013-0199-x. |
show all references
References:
[1] |
L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000. |
[2] |
M. Barchiesi, S. H. Kang, T. M. Le, M. Morini and M. Ponsiglione,
A variational model for infinite perimeter segmentations based on Lipschitz level set functions: Denoising while keeping finely oscillatory boundaries, Multiscale Model. Simul., 8 (2010), 1715-1741.
doi: 10.1137/090773659. |
[3] |
H. H. Bauschke and P. L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, With a foreword by Hédy Attouch, Springer, New York, 2011.
doi: 10.1007/978-1-4419-9467-7. |
[4] |
A. Cesaroni, S. Dipierro, M. Novaga and E. Valdinoci, Minimizers for nonlocal perimeters of Minkowski type, Calc. Var. Partial Differential Equations, 57, (2018), Art. 64, 40.
doi: 10.1007/s00526-018-1335-9. |
[5] |
A. Cesaroni and M. Novaga,
Isoperimetric problems for a nonlocal perimeter of Minkowski type, Geom. Flows, 2 (2017), 86-93.
doi: 10.1515/geofl-2017-0003. |
[6] |
A. Chambolle, A. Giacomini and L. Lussardi, Continuous limits of discrete perimeters, M2AN Math. Model. Numer. Anal., 44, (2010), 207–230.
doi: 10.1051/m2an/2009044. |
[7] |
A. Chambolle, S. Lisini and L. Lussardi,
A remark on the anisotropic outer Minkowski content, Adv. Calc. Var., 7 (2014), 241-266.
doi: 10.1515/acv-2013-0103. |
[8] |
A. Chambolle, M. Morini and M. Ponsiglione,
A nonlocal mean curvature flow and its semi-implicit time-discrete approximation, SIAM J. Math. Anal., 44 (2012), 4048-4077.
doi: 10.1137/120863587. |
[9] |
A. Chambolle, M. Morini and M. Ponsiglione,
Nonlocal curvature flows, Arch. Ration. Mech. Anal., 218 (2015), 1263-1329.
doi: 10.1007/s00205-015-0880-z. |
[10] |
R. Courant, Dirichlet's Principle, Conformal Mapping, and Minimal Surfaces, With an appendix by M. Schiffer; Reprint of the 1950 original, Springer-Verlag, New York-Heidelberg, 1977. |
[11] |
S. Dipierro, M. Novaga and E. Valdinoci,
On a Minkowski geometric flow in the plane: Evolution of curves with lack of scale invariance, J. Lond. Math. Soc. (2), 99 (2019), 31-51.
doi: 10.1112/jlms.12162. |
[12] |
M. Novaga and E. Paolini,
Regularity results for some 1-homogeneous functionals, Nonlinear Anal. Real World Appl., 3 (2002), 555-566.
doi: 10.1016/S1468-1218(01)00048-7. |
[13] |
E. Valdinoci,
A fractional framework for perimeters and phase transitions, Milan J. Math., 81 (2013), 1-23.
doi: 10.1007/s00032-013-0199-x. |
[1] |
K. D. Chu, D. D. Hai. Positive solutions for the one-dimensional singular superlinear $ p $-Laplacian problem. Communications on Pure & Applied Analysis, 2020, 19 (1) : 241-252. doi: 10.3934/cpaa.2020013 |
[2] |
Florian Krügel. Some properties of minimizers of a variational problem involving the total variation functional. Communications on Pure & Applied Analysis, 2015, 14 (1) : 341-360. doi: 10.3934/cpaa.2015.14.341 |
[3] |
Haisheng Tan, Liuyan Liu, Hongyu Liang. Total $\{k\}$-domination in special graphs. Mathematical Foundations of Computing, 2018, 1 (3) : 255-263. doi: 10.3934/mfc.2018011 |
[4] |
Nicholas J. Kass, Mohammad A. Rammaha. Local and global existence of solutions to a strongly damped wave equation of the $ p $-Laplacian type. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1449-1478. doi: 10.3934/cpaa.2018070 |
[5] |
Phuong Le. Symmetry of singular solutions for a weighted Choquard equation involving the fractional $ p $-Laplacian. Communications on Pure & Applied Analysis, 2020, 19 (1) : 527-539. doi: 10.3934/cpaa.2020026 |
[6] |
Nikolay Dimitrov, Stepan Tersian. Existence of homoclinic solutions for a nonlinear fourth order $ p $-Laplacian difference equation. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 555-567. doi: 10.3934/dcdsb.2019254 |
[7] |
Genghong Lin, Zhan Zhou. Homoclinic solutions of discrete $ \phi $-Laplacian equations with mixed nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1723-1747. doi: 10.3934/cpaa.2018082 |
[8] |
Gyula Csató. On the isoperimetric problem with perimeter density $r^p$. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2729-2749. doi: 10.3934/cpaa.2018129 |
[9] |
Mohan Mallick, R. Shivaji, Byungjae Son, S. Sundar. Bifurcation and multiplicity results for a class of $n\times n$ $p$-Laplacian system. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1295-1304. doi: 10.3934/cpaa.2018062 |
[10] |
Yeping Li, Jie Liao. Stability and $ L^{p}$ convergence rates of planar diffusion waves for three-dimensional bipolar Euler-Poisson systems. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1281-1302. doi: 10.3934/cpaa.2019062 |
[11] |
Yonglin Cao, Yuan Cao, Hai Q. Dinh, Fang-Wei Fu, Jian Gao, Songsak Sriboonchitta. Constacyclic codes of length $np^s$ over $\mathbb{F}_{p^m}+u\mathbb{F}_{p^m}$. Advances in Mathematics of Communications, 2018, 12 (2) : 231-262. doi: 10.3934/amc.2018016 |
[12] |
Joaquim Borges, Cristina Fernández-Córdoba, Roger Ten-Valls. On ${{\mathbb{Z}}}_{p^r}{{\mathbb{Z}}}_{p^s}$-additive cyclic codes. Advances in Mathematics of Communications, 2018, 12 (1) : 169-179. doi: 10.3934/amc.2018011 |
[13] |
Lingyu Diao, Jian Gao, Jiyong Lu. Some results on $ \mathbb{Z}_p\mathbb{Z}_p[v] $-additive cyclic codes. Advances in Mathematics of Communications, 2019, 0 (0) : 0-0. doi: 10.3934/amc.2020029 |
[14] |
Vladimir Chepyzhov, Alexei Ilyin, Sergey Zelik. Strong trajectory and global $\mathbf{W^{1,p}}$-attractors for the damped-driven Euler system in $\mathbb R^2$. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1835-1855. doi: 10.3934/dcdsb.2017109 |
[15] |
Claudianor O. Alves, Vincenzo Ambrosio, Teresa Isernia. Existence, multiplicity and concentration for a class of fractional $ p \& q $ Laplacian problems in $ \mathbb{R} ^{N} $. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2009-2045. doi: 10.3934/cpaa.2019091 |
[16] |
Jiao Du, Longjiang Qu, Chao Li, Xin Liao. Constructing 1-resilient rotation symmetric functions over $ {\mathbb F}_{p} $ with $ {q} $ variables through special orthogonal arrays. Advances in Mathematics of Communications, 2019, 0 (0) : 0-0. doi: 10.3934/amc.2020018 |
[17] |
Dong-Ho Tsai, Chia-Hsing Nien. On the oscillation behavior of solutions to the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 4073-4089. doi: 10.3934/dcds.2019164 |
[18] |
Lianjun Zhang, Lingchen Kong, Yan Li, Shenglong Zhou. A smoothing iterative method for quantile regression with nonconvex $ \ell_p $ penalty. Journal of Industrial & Management Optimization, 2017, 13 (1) : 93-112. doi: 10.3934/jimo.2016006 |
[19] |
Qunyi Bie, Haibo Cui, Qiru Wang, Zheng-An Yao. Incompressible limit for the compressible flow of liquid crystals in $ L^p$ type critical Besov spaces. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2879-2910. doi: 10.3934/dcds.2018124 |
[20] |
Gabriele Bonanno, Giuseppina D'Aguì. Mixed elliptic problems involving the $p-$Laplacian with nonhomogeneous boundary conditions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5797-5817. doi: 10.3934/dcds.2017252 |
2018 Impact Factor: 1.143
Tools
Metrics
Other articles
by authors
[Back to Top]