-
Previous Article
Superfluids passing an obstacle and vortex nucleation
- DCDS Home
- This Issue
-
Next Article
Preface
Minimizers of the $ p $-oscillation functional
1. | Dipartimento di Scienze Statistiche, Università di Padova, Via Battisti 241/243, 35121 Padova, Italy |
2. | Department of Mathematics and Statistics, University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia |
3. | Dipartimento di Matematica, Università di Pisa, Largo Pontecorvo 5, 56127 Pisa, Italy |
4. | Department of Mathematics and Statistics, University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia |
We define a family of functionals, called $ p $-oscillation functionals, that can be interpreted as discrete versions of the classical total variation functional for $ p = 1 $ and of the $ p $-Dirichlet functionals for $ p>1 $. We introduce the notion of minimizers and prove existence of solutions to the Dirichlet problem. Finally we provide a description of Class A minimizers (i.e. minimizers under compact perturbations) in dimension $ 1 $.
References:
[1] |
L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000. |
[2] |
M. Barchiesi, S. H. Kang, T. M. Le, M. Morini and M. Ponsiglione,
A variational model for infinite perimeter segmentations based on Lipschitz level set functions: Denoising while keeping finely oscillatory boundaries, Multiscale Model. Simul., 8 (2010), 1715-1741.
doi: 10.1137/090773659. |
[3] |
H. H. Bauschke and P. L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, With a foreword by Hédy Attouch, Springer, New York, 2011.
doi: 10.1007/978-1-4419-9467-7. |
[4] |
A. Cesaroni, S. Dipierro, M. Novaga and E. Valdinoci, Minimizers for nonlocal perimeters of Minkowski type, Calc. Var. Partial Differential Equations, 57, (2018), Art. 64, 40.
doi: 10.1007/s00526-018-1335-9. |
[5] |
A. Cesaroni and M. Novaga,
Isoperimetric problems for a nonlocal perimeter of Minkowski type, Geom. Flows, 2 (2017), 86-93.
doi: 10.1515/geofl-2017-0003. |
[6] |
A. Chambolle, A. Giacomini and L. Lussardi, Continuous limits of discrete perimeters, M2AN Math. Model. Numer. Anal., 44, (2010), 207–230.
doi: 10.1051/m2an/2009044. |
[7] |
A. Chambolle, S. Lisini and L. Lussardi,
A remark on the anisotropic outer Minkowski content, Adv. Calc. Var., 7 (2014), 241-266.
doi: 10.1515/acv-2013-0103. |
[8] |
A. Chambolle, M. Morini and M. Ponsiglione,
A nonlocal mean curvature flow and its semi-implicit time-discrete approximation, SIAM J. Math. Anal., 44 (2012), 4048-4077.
doi: 10.1137/120863587. |
[9] |
A. Chambolle, M. Morini and M. Ponsiglione,
Nonlocal curvature flows, Arch. Ration. Mech. Anal., 218 (2015), 1263-1329.
doi: 10.1007/s00205-015-0880-z. |
[10] |
R. Courant, Dirichlet's Principle, Conformal Mapping, and Minimal Surfaces, With an appendix by M. Schiffer; Reprint of the 1950 original, Springer-Verlag, New York-Heidelberg, 1977. |
[11] |
S. Dipierro, M. Novaga and E. Valdinoci,
On a Minkowski geometric flow in the plane: Evolution of curves with lack of scale invariance, J. Lond. Math. Soc. (2), 99 (2019), 31-51.
doi: 10.1112/jlms.12162. |
[12] |
M. Novaga and E. Paolini,
Regularity results for some 1-homogeneous functionals, Nonlinear Anal. Real World Appl., 3 (2002), 555-566.
doi: 10.1016/S1468-1218(01)00048-7. |
[13] |
E. Valdinoci,
A fractional framework for perimeters and phase transitions, Milan J. Math., 81 (2013), 1-23.
doi: 10.1007/s00032-013-0199-x. |
show all references
References:
[1] |
L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000. |
[2] |
M. Barchiesi, S. H. Kang, T. M. Le, M. Morini and M. Ponsiglione,
A variational model for infinite perimeter segmentations based on Lipschitz level set functions: Denoising while keeping finely oscillatory boundaries, Multiscale Model. Simul., 8 (2010), 1715-1741.
doi: 10.1137/090773659. |
[3] |
H. H. Bauschke and P. L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, With a foreword by Hédy Attouch, Springer, New York, 2011.
doi: 10.1007/978-1-4419-9467-7. |
[4] |
A. Cesaroni, S. Dipierro, M. Novaga and E. Valdinoci, Minimizers for nonlocal perimeters of Minkowski type, Calc. Var. Partial Differential Equations, 57, (2018), Art. 64, 40.
doi: 10.1007/s00526-018-1335-9. |
[5] |
A. Cesaroni and M. Novaga,
Isoperimetric problems for a nonlocal perimeter of Minkowski type, Geom. Flows, 2 (2017), 86-93.
doi: 10.1515/geofl-2017-0003. |
[6] |
A. Chambolle, A. Giacomini and L. Lussardi, Continuous limits of discrete perimeters, M2AN Math. Model. Numer. Anal., 44, (2010), 207–230.
doi: 10.1051/m2an/2009044. |
[7] |
A. Chambolle, S. Lisini and L. Lussardi,
A remark on the anisotropic outer Minkowski content, Adv. Calc. Var., 7 (2014), 241-266.
doi: 10.1515/acv-2013-0103. |
[8] |
A. Chambolle, M. Morini and M. Ponsiglione,
A nonlocal mean curvature flow and its semi-implicit time-discrete approximation, SIAM J. Math. Anal., 44 (2012), 4048-4077.
doi: 10.1137/120863587. |
[9] |
A. Chambolle, M. Morini and M. Ponsiglione,
Nonlocal curvature flows, Arch. Ration. Mech. Anal., 218 (2015), 1263-1329.
doi: 10.1007/s00205-015-0880-z. |
[10] |
R. Courant, Dirichlet's Principle, Conformal Mapping, and Minimal Surfaces, With an appendix by M. Schiffer; Reprint of the 1950 original, Springer-Verlag, New York-Heidelberg, 1977. |
[11] |
S. Dipierro, M. Novaga and E. Valdinoci,
On a Minkowski geometric flow in the plane: Evolution of curves with lack of scale invariance, J. Lond. Math. Soc. (2), 99 (2019), 31-51.
doi: 10.1112/jlms.12162. |
[12] |
M. Novaga and E. Paolini,
Regularity results for some 1-homogeneous functionals, Nonlinear Anal. Real World Appl., 3 (2002), 555-566.
doi: 10.1016/S1468-1218(01)00048-7. |
[13] |
E. Valdinoci,
A fractional framework for perimeters and phase transitions, Milan J. Math., 81 (2013), 1-23.
doi: 10.1007/s00032-013-0199-x. |
[1] |
Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020403 |
[2] |
Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure & Applied Analysis, 2021, 20 (2) : 835-865. doi: 10.3934/cpaa.2020293 |
[3] |
Hai Q. Dinh, Bac T. Nguyen, Paravee Maneejuk. Constacyclic codes of length $ 8p^s $ over $ \mathbb F_{p^m} + u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020123 |
[4] |
Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246 |
[5] |
Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293 |
[6] |
Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037 |
[7] |
Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075 |
[8] |
Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020445 |
[9] |
Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020442 |
[10] |
Fuensanta Andrés, Julio Muñoz, Jesús Rosado. Optimal design problems governed by the nonlocal $ p $-Laplacian equation. Mathematical Control & Related Fields, 2021, 11 (1) : 119-141. doi: 10.3934/mcrf.2020030 |
[11] |
Sebastian J. Schreiber. The $ P^* $ rule in the stochastic Holt-Lawton model of apparent competition. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 633-644. doi: 10.3934/dcdsb.2020374 |
[12] |
Hongming Ru, Chunming Tang, Yanfeng Qi, Yuxiao Deng. A construction of $ p $-ary linear codes with two or three weights. Advances in Mathematics of Communications, 2021, 15 (1) : 9-22. doi: 10.3934/amc.2020039 |
[13] |
Chunming Tang, Maozhi Xu, Yanfeng Qi, Mingshuo Zhou. A new class of $ p $-ary regular bent functions. Advances in Mathematics of Communications, 2021, 15 (1) : 55-64. doi: 10.3934/amc.2020042 |
[14] |
Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020378 |
[15] |
Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265 |
[16] |
Yao Nie, Jia Yuan. The Littlewood-Paley $ pth $-order moments in three-dimensional MHD turbulence. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020397 |
[17] |
Michal Fečkan, Kui Liu, JinRong Wang. $ (\omega,\mathbb{T}) $-periodic solutions of impulsive evolution equations. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021006 |
[18] |
Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365 |
[19] |
Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328 |
[20] |
Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]