December  2019, 39(12): 6785-6799. doi: 10.3934/dcds.2019231

Minimizers of the $ p $-oscillation functional

1. 

Dipartimento di Scienze Statistiche, Università di Padova, Via Battisti 241/243, 35121 Padova, Italy

2. 

Department of Mathematics and Statistics, University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia

3. 

Dipartimento di Matematica, Università di Pisa, Largo Pontecorvo 5, 56127 Pisa, Italy

4. 

Department of Mathematics and Statistics, University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia

* Corresponding author: Serena Dipierro

To Luis Caffarelli, on the occasion of his 70th birthday

Received  June 2018 Revised  December 2018 Published  June 2019

Fund Project: This work has been supported by the Australian Research Council grant "N.E.W." Nonlocal Equation at Work.

We define a family of functionals, called $ p $-oscillation functionals, that can be interpreted as discrete versions of the classical total variation functional for $ p = 1 $ and of the $ p $-Dirichlet functionals for $ p>1 $. We introduce the notion of minimizers and prove existence of solutions to the Dirichlet problem. Finally we provide a description of Class A minimizers (i.e. minimizers under compact perturbations) in dimension $ 1 $.

Citation: Annalisa Cesaroni, Serena Dipierro, Matteo Novaga, Enrico Valdinoci. Minimizers of the $ p $-oscillation functional. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 6785-6799. doi: 10.3934/dcds.2019231
References:
[1]

L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000.  Google Scholar

[2]

M. BarchiesiS. H. KangT. M. LeM. Morini and M. Ponsiglione, A variational model for infinite perimeter segmentations based on Lipschitz level set functions: Denoising while keeping finely oscillatory boundaries, Multiscale Model. Simul., 8 (2010), 1715-1741.  doi: 10.1137/090773659.  Google Scholar

[3]

H. H. Bauschke and P. L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, With a foreword by Hédy Attouch, Springer, New York, 2011. doi: 10.1007/978-1-4419-9467-7.  Google Scholar

[4]

A. Cesaroni, S. Dipierro, M. Novaga and E. Valdinoci, Minimizers for nonlocal perimeters of Minkowski type, Calc. Var. Partial Differential Equations, 57, (2018), Art. 64, 40. doi: 10.1007/s00526-018-1335-9.  Google Scholar

[5]

A. Cesaroni and M. Novaga, Isoperimetric problems for a nonlocal perimeter of Minkowski type, Geom. Flows, 2 (2017), 86-93.  doi: 10.1515/geofl-2017-0003.  Google Scholar

[6]

A. Chambolle, A. Giacomini and L. Lussardi, Continuous limits of discrete perimeters, M2AN Math. Model. Numer. Anal., 44, (2010), 207–230. doi: 10.1051/m2an/2009044.  Google Scholar

[7]

A. ChambolleS. Lisini and L. Lussardi, A remark on the anisotropic outer Minkowski content, Adv. Calc. Var., 7 (2014), 241-266.  doi: 10.1515/acv-2013-0103.  Google Scholar

[8]

A. ChambolleM. Morini and M. Ponsiglione, A nonlocal mean curvature flow and its semi-implicit time-discrete approximation, SIAM J. Math. Anal., 44 (2012), 4048-4077.  doi: 10.1137/120863587.  Google Scholar

[9]

A. ChambolleM. Morini and M. Ponsiglione, Nonlocal curvature flows, Arch. Ration. Mech. Anal., 218 (2015), 1263-1329.  doi: 10.1007/s00205-015-0880-z.  Google Scholar

[10]

R. Courant, Dirichlet's Principle, Conformal Mapping, and Minimal Surfaces, With an appendix by M. Schiffer; Reprint of the 1950 original, Springer-Verlag, New York-Heidelberg, 1977.  Google Scholar

[11]

S. DipierroM. Novaga and E. Valdinoci, On a Minkowski geometric flow in the plane: Evolution of curves with lack of scale invariance, J. Lond. Math. Soc. (2), 99 (2019), 31-51.  doi: 10.1112/jlms.12162.  Google Scholar

[12]

M. Novaga and E. Paolini, Regularity results for some 1-homogeneous functionals, Nonlinear Anal. Real World Appl., 3 (2002), 555-566.  doi: 10.1016/S1468-1218(01)00048-7.  Google Scholar

[13]

E. Valdinoci, A fractional framework for perimeters and phase transitions, Milan J. Math., 81 (2013), 1-23.  doi: 10.1007/s00032-013-0199-x.  Google Scholar

show all references

References:
[1]

L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000.  Google Scholar

[2]

M. BarchiesiS. H. KangT. M. LeM. Morini and M. Ponsiglione, A variational model for infinite perimeter segmentations based on Lipschitz level set functions: Denoising while keeping finely oscillatory boundaries, Multiscale Model. Simul., 8 (2010), 1715-1741.  doi: 10.1137/090773659.  Google Scholar

[3]

H. H. Bauschke and P. L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, With a foreword by Hédy Attouch, Springer, New York, 2011. doi: 10.1007/978-1-4419-9467-7.  Google Scholar

[4]

A. Cesaroni, S. Dipierro, M. Novaga and E. Valdinoci, Minimizers for nonlocal perimeters of Minkowski type, Calc. Var. Partial Differential Equations, 57, (2018), Art. 64, 40. doi: 10.1007/s00526-018-1335-9.  Google Scholar

[5]

A. Cesaroni and M. Novaga, Isoperimetric problems for a nonlocal perimeter of Minkowski type, Geom. Flows, 2 (2017), 86-93.  doi: 10.1515/geofl-2017-0003.  Google Scholar

[6]

A. Chambolle, A. Giacomini and L. Lussardi, Continuous limits of discrete perimeters, M2AN Math. Model. Numer. Anal., 44, (2010), 207–230. doi: 10.1051/m2an/2009044.  Google Scholar

[7]

A. ChambolleS. Lisini and L. Lussardi, A remark on the anisotropic outer Minkowski content, Adv. Calc. Var., 7 (2014), 241-266.  doi: 10.1515/acv-2013-0103.  Google Scholar

[8]

A. ChambolleM. Morini and M. Ponsiglione, A nonlocal mean curvature flow and its semi-implicit time-discrete approximation, SIAM J. Math. Anal., 44 (2012), 4048-4077.  doi: 10.1137/120863587.  Google Scholar

[9]

A. ChambolleM. Morini and M. Ponsiglione, Nonlocal curvature flows, Arch. Ration. Mech. Anal., 218 (2015), 1263-1329.  doi: 10.1007/s00205-015-0880-z.  Google Scholar

[10]

R. Courant, Dirichlet's Principle, Conformal Mapping, and Minimal Surfaces, With an appendix by M. Schiffer; Reprint of the 1950 original, Springer-Verlag, New York-Heidelberg, 1977.  Google Scholar

[11]

S. DipierroM. Novaga and E. Valdinoci, On a Minkowski geometric flow in the plane: Evolution of curves with lack of scale invariance, J. Lond. Math. Soc. (2), 99 (2019), 31-51.  doi: 10.1112/jlms.12162.  Google Scholar

[12]

M. Novaga and E. Paolini, Regularity results for some 1-homogeneous functionals, Nonlinear Anal. Real World Appl., 3 (2002), 555-566.  doi: 10.1016/S1468-1218(01)00048-7.  Google Scholar

[13]

E. Valdinoci, A fractional framework for perimeters and phase transitions, Milan J. Math., 81 (2013), 1-23.  doi: 10.1007/s00032-013-0199-x.  Google Scholar

[1]

Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020403

[2]

Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure & Applied Analysis, 2021, 20 (2) : 835-865. doi: 10.3934/cpaa.2020293

[3]

Hai Q. Dinh, Bac T. Nguyen, Paravee Maneejuk. Constacyclic codes of length $ 8p^s $ over $ \mathbb F_{p^m} + u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020123

[4]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[5]

Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293

[6]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

[7]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[8]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[9]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[10]

Fuensanta Andrés, Julio Muñoz, Jesús Rosado. Optimal design problems governed by the nonlocal $ p $-Laplacian equation. Mathematical Control & Related Fields, 2021, 11 (1) : 119-141. doi: 10.3934/mcrf.2020030

[11]

Sebastian J. Schreiber. The $ P^* $ rule in the stochastic Holt-Lawton model of apparent competition. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 633-644. doi: 10.3934/dcdsb.2020374

[12]

Hongming Ru, Chunming Tang, Yanfeng Qi, Yuxiao Deng. A construction of $ p $-ary linear codes with two or three weights. Advances in Mathematics of Communications, 2021, 15 (1) : 9-22. doi: 10.3934/amc.2020039

[13]

Chunming Tang, Maozhi Xu, Yanfeng Qi, Mingshuo Zhou. A new class of $ p $-ary regular bent functions. Advances in Mathematics of Communications, 2021, 15 (1) : 55-64. doi: 10.3934/amc.2020042

[14]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[15]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[16]

Yao Nie, Jia Yuan. The Littlewood-Paley $ pth $-order moments in three-dimensional MHD turbulence. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020397

[17]

Michal Fečkan, Kui Liu, JinRong Wang. $ (\omega,\mathbb{T}) $-periodic solutions of impulsive evolution equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021006

[18]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[19]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328

[20]

Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (180)
  • HTML views (348)
  • Cited by (0)

[Back to Top]