December  2019, 39(12): 6825-6842. doi: 10.3934/dcds.2019233

Free boundary problems associated with cancer treatment by combination therapy

1. 

Mathematical Bioscience Institute & Department of Mathematics, Ohio State University, Columbus, OH, USA

2. 

Institute for Mathematical Sciences, Renmin University of China, Beijing, China

* Corresponding author: Avner Friedman

Received  June 2018 Revised  October 2018 Published  June 2019

Fund Project: The first author is supported by NSF grant DMS 0931642.

Many mathematical models of biological processes can be represented as free boundary problems for systems of PDEs. In the radially symmetric case, the free boundary is a function of $ r = R(t) $, and one can generally prove the existence of global in-time solutions. However, the asymptotic behavior of the solution and, in particular, of $ R(t) $, has not been explored except in very special cases. In the present paper we consider two such models which arise in cancer treatment by combination therapy with two drugs. We study the asymptotic behavior of the solution and its dependence on the dose levels of the two drugs.

Citation: Avner Friedman, Xiulan Lai. Free boundary problems associated with cancer treatment by combination therapy. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 6825-6842. doi: 10.3934/dcds.2019233
References:
[1]

J.-F. CaoW.-T. Li and M. Zhao, On a free boundary problem for a nonlocal reaction-diffusion model, Discrete & Continuous Dynamical Systems - B, 23 (2018), 4117-4139.   Google Scholar

[2]

J. A. Carrillo and J. L. Vazquez, A hyperbolic free boundary problem modeling tumor growth: Asymptotic behavior, Philos. Trans. A Math. Phys. Eng. Sci., 373 (2015), 20140275.   Google Scholar

[3]

H. A. Chang-Lara, N. Guillen and R. W. Schwab, Non local branching Brownians with annihilation and free boundary problems, arXiv: 1807.02714, (2015). Google Scholar

[4]

X. ChenS. Cui and A. Friedman, A hyperbolic free boundary problem modeling tumor growth: Asymptotic behavior, Transactions of the American Mathematical Society, 357 (2005), 4771-4804.  doi: 10.1090/S0002-9947-05-03784-0.  Google Scholar

[5]

S. Cui and A. Friedman, A free boundary problem for a singular system of differential equations: An application to a model of tumor growth, Transactions of the American Mathematical Society, 355 (2003), 3537-3590.  doi: 10.1090/S0002-9947-03-03137-4.  Google Scholar

[6]

A. De Massi, P. A. Ferrari, E. Presutti and N. Soprano-Loto, Non local branching Brownians with annihilation and free boundary problems, arXiv: 1711.06390, (2017). Google Scholar

[7]

A. Friedman, Mathematical Biology Modeling and Analysis, Conference Board of the Mathematical Sciences Reginal Conference Series in Mathematics, 127, American Mathematical Society, Singapore, 2018.  Google Scholar

[8]

A. FriedmanB. Hu and C. Xue, Analysis of a mathematical model of ischemic cutaneous wounds, SIAM Journal on Mathematical Analysis, 42 (2010), 2013-2040.  doi: 10.1137/090772630.  Google Scholar

[9]

A. FriedmenC.-Y. Kao and R. Leander, On the dynamics of radially symmetric granulomas, Journal of Mathematical Analysis and Applications, 412 (2014), 776-791.  doi: 10.1016/j.jmaa.2013.11.017.  Google Scholar

[10]

A. Friedman and X. Lai, Combination therapy for cancer with oncolytic virus and checkpoint inhibitor: A mathematical model, PLoS ONE, 13 (2018), e0192449.   Google Scholar

[11]

A. Friedman and K.-Y. Lam, On the stability of steady states in a granuloma model, Journal of Differential Equations, 256 (2014), 3743-3769.  doi: 10.1016/j.jde.2014.02.019.  Google Scholar

[12]

X. Lai and A. Friedman, Combination therapy of cancer with cancer vaccine and immune checkpoint inhibitor: A mathematical model, PLoS ONE, 12 (2017), e0178479.  doi: 10.3934/mbe.2017020.  Google Scholar

[13]

J. Lee, A free boundary problem with non local interaction, Mathematical Physics, Analysis and Geometry, 21 (2018), 1-22.  doi: 10.1007/s11040-018-9282-4.  Google Scholar

[14]

J. Wu, Stationary solutions of a free boundary problem modeling the growth of tumors with Gibbs-Thomson relation, Journal of Differential Equations, 260 (2016), 5875-5893.  doi: 10.1016/j.jde.2015.12.023.  Google Scholar

[15]

J. Wu and F. Zhou, Asymptotic behavior of solutions of a free boundary problem modeling tumor spheroid with Gibbs-Thomson relation, Journal of Differential Equations, 262 (2017), 4907-4930.  doi: 10.1016/j.jde.2017.01.012.  Google Scholar

show all references

References:
[1]

J.-F. CaoW.-T. Li and M. Zhao, On a free boundary problem for a nonlocal reaction-diffusion model, Discrete & Continuous Dynamical Systems - B, 23 (2018), 4117-4139.   Google Scholar

[2]

J. A. Carrillo and J. L. Vazquez, A hyperbolic free boundary problem modeling tumor growth: Asymptotic behavior, Philos. Trans. A Math. Phys. Eng. Sci., 373 (2015), 20140275.   Google Scholar

[3]

H. A. Chang-Lara, N. Guillen and R. W. Schwab, Non local branching Brownians with annihilation and free boundary problems, arXiv: 1807.02714, (2015). Google Scholar

[4]

X. ChenS. Cui and A. Friedman, A hyperbolic free boundary problem modeling tumor growth: Asymptotic behavior, Transactions of the American Mathematical Society, 357 (2005), 4771-4804.  doi: 10.1090/S0002-9947-05-03784-0.  Google Scholar

[5]

S. Cui and A. Friedman, A free boundary problem for a singular system of differential equations: An application to a model of tumor growth, Transactions of the American Mathematical Society, 355 (2003), 3537-3590.  doi: 10.1090/S0002-9947-03-03137-4.  Google Scholar

[6]

A. De Massi, P. A. Ferrari, E. Presutti and N. Soprano-Loto, Non local branching Brownians with annihilation and free boundary problems, arXiv: 1711.06390, (2017). Google Scholar

[7]

A. Friedman, Mathematical Biology Modeling and Analysis, Conference Board of the Mathematical Sciences Reginal Conference Series in Mathematics, 127, American Mathematical Society, Singapore, 2018.  Google Scholar

[8]

A. FriedmanB. Hu and C. Xue, Analysis of a mathematical model of ischemic cutaneous wounds, SIAM Journal on Mathematical Analysis, 42 (2010), 2013-2040.  doi: 10.1137/090772630.  Google Scholar

[9]

A. FriedmenC.-Y. Kao and R. Leander, On the dynamics of radially symmetric granulomas, Journal of Mathematical Analysis and Applications, 412 (2014), 776-791.  doi: 10.1016/j.jmaa.2013.11.017.  Google Scholar

[10]

A. Friedman and X. Lai, Combination therapy for cancer with oncolytic virus and checkpoint inhibitor: A mathematical model, PLoS ONE, 13 (2018), e0192449.   Google Scholar

[11]

A. Friedman and K.-Y. Lam, On the stability of steady states in a granuloma model, Journal of Differential Equations, 256 (2014), 3743-3769.  doi: 10.1016/j.jde.2014.02.019.  Google Scholar

[12]

X. Lai and A. Friedman, Combination therapy of cancer with cancer vaccine and immune checkpoint inhibitor: A mathematical model, PLoS ONE, 12 (2017), e0178479.  doi: 10.3934/mbe.2017020.  Google Scholar

[13]

J. Lee, A free boundary problem with non local interaction, Mathematical Physics, Analysis and Geometry, 21 (2018), 1-22.  doi: 10.1007/s11040-018-9282-4.  Google Scholar

[14]

J. Wu, Stationary solutions of a free boundary problem modeling the growth of tumors with Gibbs-Thomson relation, Journal of Differential Equations, 260 (2016), 5875-5893.  doi: 10.1016/j.jde.2015.12.023.  Google Scholar

[15]

J. Wu and F. Zhou, Asymptotic behavior of solutions of a free boundary problem modeling tumor spheroid with Gibbs-Thomson relation, Journal of Differential Equations, 262 (2017), 4907-4930.  doi: 10.1016/j.jde.2017.01.012.  Google Scholar

Figure 1.  The profiles of functions $ h(C) $ and $ f(C) $ given by (25) and (27) respectively
Figure 2.  Illustration of the situation where $ R\to0 $ or $ R\to \infty $ in terms of $ \gamma_A $ and $ \gamma_V $. Dashed line represents $ \lambda+\gamma_A\delta = \gamma_V $. Dotted line is defined by $ \gamma_A = \frac{\lambda}{\sqrt{4\frac{\lambda}{K}(1+\delta)-\delta}} = \gamma_A^* $. The solid curve represents $ C^* = C^{**} $ which is given by $ \gamma_V^2+[2(1+\delta)-(\lambda+\gamma_A\delta)]\gamma_V+(1+\delta)\left[1+\delta+\frac{\lambda}{K}-(\lambda+\gamma_A\delta)\right] = 0 $. The pairs $ (C^*,C^{**}) $ exists in the region bounded by the three curves. Here $ K = 2 $, $ \lambda = 2 $, $ \delta = 1 $
Figure 3.  The shape of functions $ f(C) $ and $ h(C) $. (a) The case (40), $ \gamma_A-\lambda<\mu-\gamma_V $. (b) The case (42), $ \gamma_A-\lambda>\mu-\gamma_V $
Figure 4.  Illustration of the situation where $ R\to0 $ or $ R\to \infty $ in terms of $ \gamma_A $ and $ \gamma_V $. Dashed line represents $ \gamma_A+\gamma_V = \lambda+\mu $. Dotted line denotes $ \gamma_A\gamma_V = \frac{1}{4}(\lambda+\mu)^2 $. Dash-doted line represents $ \gamma_V = \mu $. Solid curve represents either $ C^* = C^{**} $ or $ C^*_+ = C^{**} $. The pairs $ (C^*,C^{**}) $ exists in the region below the dashed line, while the pairs $ (C^*_+,C^{**}) $ exists in the region bounded by the dashed line and doted curve. Here $ \lambda = 0.5 $, $ \mu = 2 $
Table 1.  The comparison between $ C^{**} $ and $ C^{*} $ (Fig. 3(a)), $ C^*_\pm $ (Fig. 3(b)). Note that $ C^* $ exists if (40) holds; $ C^*_\pm $ exists if (42) holds; $ C^{**} $ exists if $ \gamma_V<\mu $
$ \gamma_A^2+4\gamma_A\gamma_V>(\lambda+\mu)^2 $ $ \gamma_A^2+4\gamma_A\gamma_V\le(\lambda+\mu)^2 $
$ \lambda> \mu $ $ \lambda \le \mu $ $ \lambda< \mu $ $ \lambda \ge \mu $
$ \lambda\mu>\gamma_A \gamma_V $ $ C^*_-<C^{**} $ $ C^*_-<C^{**} $ $ C^*_-<C^{**} $ $ C^*>C^{**} $
$ C^*_+>C^{**} $
$ C^*>C^{**} $
$ C^*_+>C^{**} $
$ \lambda\mu<\gamma_A \gamma_V $ $ C^*_->C^{**} $ $ C^*<C^{**} $
$ C^*_+<C^{**} $
$ \gamma_A^2+4\gamma_A\gamma_V>(\lambda+\mu)^2 $ $ \gamma_A^2+4\gamma_A\gamma_V\le(\lambda+\mu)^2 $
$ \lambda> \mu $ $ \lambda \le \mu $ $ \lambda< \mu $ $ \lambda \ge \mu $
$ \lambda\mu>\gamma_A \gamma_V $ $ C^*_-<C^{**} $ $ C^*_-<C^{**} $ $ C^*_-<C^{**} $ $ C^*>C^{**} $
$ C^*_+>C^{**} $
$ C^*>C^{**} $
$ C^*_+>C^{**} $
$ \lambda\mu<\gamma_A \gamma_V $ $ C^*_->C^{**} $ $ C^*<C^{**} $
$ C^*_+<C^{**} $
[1]

Shujing Shi, Jicai Huang, Yang Kuang. Global dynamics in a tumor-immune model with an immune checkpoint inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1149-1170. doi: 10.3934/dcdsb.2020157

[2]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[3]

Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021028

[4]

Huijuan Song, Bei Hu, Zejia Wang. Stationary solutions of a free boundary problem modeling the growth of vascular tumors with a necrotic core. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 667-691. doi: 10.3934/dcdsb.2020084

[5]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[6]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[7]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[8]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[9]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[10]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318

[11]

Lei Yang, Lianzhang Bao. Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1083-1109. doi: 10.3934/dcdsb.2020154

[12]

Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124

[13]

Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293

[14]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[15]

Qianqian Hou, Tai-Chia Lin, Zhi-An Wang. On a singularly perturbed semi-linear problem with Robin boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 401-414. doi: 10.3934/dcdsb.2020083

[16]

Urszula Ledzewicz, Heinz Schättler. On the role of pharmacometrics in mathematical models for cancer treatments. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 483-499. doi: 10.3934/dcdsb.2020213

[17]

Mohamed Dellal, Bachir Bar. Global analysis of a model of competition in the chemostat with internal inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1129-1148. doi: 10.3934/dcdsb.2020156

[18]

Adam Glick, Antonio Mastroberardino. Combined therapy for treating solid tumors with chemotherapy and angiogenic inhibitors. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020343

[19]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[20]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (294)
  • HTML views (355)
  • Cited by (0)

Other articles
by authors

[Back to Top]