In this paper, we give a mathematically rigorous proof of the averaging behavior of oscillatory surface integrals. Based on ergodic theory, we find a general geometric condition which we call irrational direction dense condition, abbreviated as IDDC, under which the averaging takes place. It should be stressed that IDDC does not imply any control on the curvature of the given surface. As an application, we prove homogenization for elliptic systems with Dirichlet boundary data, in $ C^1 $-domains.
Citation: |
[1] |
H. Aleksanyan, Slow convergence in periodic homogenization problems for divergence-type elliptic operators, SIAM J. Math. Anal., 48 (2016), 3345-3382.
doi: 10.1137/15M1040165.![]() ![]() ![]() |
[2] |
H. Aleksanyan, H. Shahgholian and P. Sjölin, Applications of Fourier analysis in homogenization of Dirichlet problem Ⅰ. Pointwise estimates, J. Differential Equations, 254 (2013), 2626-2637.
doi: 10.1016/j.jde.2012.12.017.![]() ![]() ![]() |
[3] |
H. Aleksanyan, H. Shahgholian and P. Sjölin, Applications of Fourier analysis in homogenization of Dirichlet problem Ⅱ. $L^p$-estimates, Arch. Rational Mech. Anal., 215 (2015), 65-87.
doi: 10.1007/s00205-014-0774-5.![]() ![]() ![]() |
[4] |
S. Armstrong, T. Kuusi, J.-C. Mourrat and C. Prange, Quantitative analysis of boundary layers in periodic homogenization, Arch. Rational Mech. Anal., 226 (2017), 695-741.
doi: 10.1007/s00205-017-1142-z.![]() ![]() ![]() |
[5] |
M. Avellaneda and F.-H. Lin, Compactness methods in the theory of homogenizations, Comm. Pure Appl. Math., 40 (1987), 803-847.
doi: 10.1002/cpa.3160400607.![]() ![]() ![]() |
[6] |
M. Avellaneda and F.-H. Lin, Homogenization of Poisson's kernel and applications to boundary control, J. Math. Pures Appl., 68 (1989), 1-29.
![]() ![]() |
[7] |
A. Bensoussan, J. L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, 2$^{nd}$ edition, American Mathematical Society, Providence, Rhode-Island, 1978.
![]() ![]() |
[8] |
S. Choi and I. Kim, Homogenization for nonlinear PDEs in general domains with oscillatory Neumann boundary data, J. Math. Pures Appl., 102 (2014), 419-448.
doi: 10.1016/j.matpur.2013.11.015.![]() ![]() ![]() |
[9] |
S. Choi, I. Kim and K.-A. Lee, Homogenization of Neumann boundary data with fully nonlinear operator, Analysis & PDE, 6 (2013), 951-972.
doi: 10.2140/apde.2013.6.951.![]() ![]() ![]() |
[10] |
H. Dong and S. Kim, Green's matrices of second order elliptic systems with measurable coefficients in two dimensional domains, Trans. Amer. Math. Soc., 361 (2009), 3303-3323.
doi: 10.1090/S0002-9947-09-04805-3.![]() ![]() ![]() |
[11] |
W. Feldman, Homogenization of the oscillating Dirichlet boundary condition in general domains, J. Math. Pures Appl., 101 (2014), 599-622.
doi: 10.1016/j.matpur.2013.07.003.![]() ![]() ![]() |
[12] |
D. Gérard-Varet and N. Masmoudi, Homogenization in polygonal domains, J. Eur. Math. Soc., 13 (2011), 1477-1503.
doi: 10.4171/JEMS/286.![]() ![]() ![]() |
[13] |
D. Gérard-Varet and N. Masmoudi, Homogenization and boundary layers, Acta Math., 209 (2012), 1-46.
doi: 10.1007/s11511-012-0083-5.![]() ![]() ![]() |
[14] |
S. Hofmann and S. Kim, The Green function estimates for strongly elliptic systems of second order, Manuscripta Math., 124 (2007), 139-172.
doi: 10.1007/s00229-007-0107-1.![]() ![]() ![]() |
[15] |
C. Kenig, F.-H. Lin and Z. Shen, Periodic homogenization of Green and Neumann functions, Comm. Pure Appl. Math., 67 (2014), 1219-1262.
doi: 10.1002/cpa.21482.![]() ![]() ![]() |
[16] |
C. Prange, Asymptotic analysis of boundary layer correctors in periodic homogenization, SIAM J. Math. Anal., 45 (2013), 345-387.
doi: 10.1137/120876502.![]() ![]() ![]() |
[17] |
E. Stein, Harmonic Analysis : Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Vol. 43, Princeton University Press, New Jersey, 1993.
![]() ![]() |
[18] |
Z. Shen and J. Zhuge, Boundary layers in periodic homogenization of Neumann problems, Comm. Pure Appl. Math., 71 (2018), 2163-2219.
doi: 10.1002/cpa.21740.![]() ![]() ![]() |
[19] |
J. Zhuge, Homogenization and boundary layers in domains of finite type, Comm. Partial Differential Equations, (2018), 1–36.
doi: 10.1080/03605302.2018.1446160.![]() ![]() ![]() |