December  2019, 39(12): 6961-6978. doi: 10.3934/dcds.2019239

Recent progresses on elliptic two-phase free boundary problems

1. 

Department of Mathematics, Barnard College, Columbia University, New York, NY 10027, USA

2. 

Dipartimento di Matematica dell'Università di Bologna, Piazza di Porta S. Donato, 5, 40126 Bologna, Italy

3. 

Dipartimento di Matematica del Politecnico di Milano, Leonardo da Vinci, 32, 20133 Milano, Italy

* Corresponding author: Sandro Salsa

To Luis, with friendship and admiration

Received  October 2018 Revised  November 2018 Published  June 2019

Fund Project: D. D. is partially supported by the Tow Award. F. F. is partially supported by: INDAM-GNAMPA 2017-Regolarità delle soluzioni viscose per equazioni a derivate parziali non lineari degeneri, INDAM-GNAMPA 2018-Costanti critiche e problemi asintotici per equazioni completamente non lineari.

We provide an overview of some recent results about the regularity of the solution and the free boundary for so-called two-phase free boundary problems driven by uniformly elliptic equations.

Citation: Daniela De Silva, Fausto Ferrari, Sandro Salsa. Recent progresses on elliptic two-phase free boundary problems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 6961-6978. doi: 10.3934/dcds.2019239
References:
[1]

S. AgmonA. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Ⅰ, Comm. Pure Appl. Math., 12 (1959), 623-727.  doi: 10.1002/cpa.3160120405.  Google Scholar

[2]

H. W. Alt and L. Caffarelli, Existence and regularity for a minimum problem with free boundary, J. Reine und Angew. Math., 331 (1982), 105-144.   Google Scholar

[3]

H. W. AltL. Caffarelli and A. Friedman, Variational problems with two phases and their free boundaries, Trans. Amer. Math. Soc., 282 (1984), 431-461.  doi: 10.1090/S0002-9947-1984-0732100-6.  Google Scholar

[4]

M. D. Amaral and E. V. Teixeira, Free transmission problems, Comm. Math. Phys., 337 (2015), 1465-1489.  doi: 10.1007/s00220-015-2290-3.  Google Scholar

[5]

C. J AmickL. E. Fraenkel and J. F. Toland, On the Stokes conjecture for the wave of extreme form, Acta Math., 148 (1982), 193-214.  doi: 10.1007/BF02392728.  Google Scholar

[6]

R. Argiolas and F. Ferrari, Flat free boundaries regularity in two-phase problems for a class of fully nonlinear elliptic operators with variable coefficients, Interfaces Free Bound., 11 (2009), 177-199.  doi: 10.4171/IFB/208.  Google Scholar

[7]

G. K. Batchelor, On steady laminar flow with closed streamlines at large Reynolds number, J. Fluid. Mech., 1 (1956), 177-190.  doi: 10.1017/S0022112056000123.  Google Scholar

[8]

L. Caffarelli, A Harnack inequality approach to the regularity of free boundaries, Part $1$: Lipschitz free boundaries are $C_{\alpha }^{1}$, Rev. Mat. Iberoamericana, 3 (1987), 139-162.  doi: 10.4171/RMI/47.  Google Scholar

[9]

L. Caffarelli, A Harnack inequality approach to the regularity of free boundaries. Ⅱ. Flat free boundaries are Lipschitz, Comm. Pure Appl. Math., 42 (1989), 55-78.  doi: 10.1002/cpa.3160420105.  Google Scholar

[10]

L. Caffarelli, A Harnack inequality approach to the regularity of free boundaries, Part Ⅲ: Existence theory, compactness and dependence on $X$, Ann. Sc. Norm. Sup. Pisa Cl. SC. (4), 15 (1988), 383-602.   Google Scholar

[11]

L. A. CaffarelliD. De Silva and O. Savin, Two-phase anisotropic free boundary problems and applications to the Bellman equation in 2D, Arch. Ration. Mech. Anal., 228 (2018), 477-493.  doi: 10.1007/s00205-017-1198-9.  Google Scholar

[12]

L. Caffarelli and S. Salsa, A Geometric Approach to Free Boundary Problems, Graduate Studies in Mathematics, 68, American Mathematical Society, Providence, RI, 2005. doi: 10.1090/gsm/068.  Google Scholar

[13]

L. CaffarelliD. Jerison and C. Kenig, Some new monotonicity theorems with applications to free boundary problems, Ann. of Math., 155 (2002), 369-404.  doi: 10.2307/3062121.  Google Scholar

[14]

M. C. CeruttiF. Ferrari and S. Salsa, Two-phase problems for linear elliptic operators with variable coefficients: Lipschitz free boundaries are $C^{1,\gamma}$, Arch. Rational Mech. Anal., 171 (2004), 329-348.  doi: 10.1007/s00205-003-0290-5.  Google Scholar

[15]

D. De Silva, Free boundary regularity for a problem with right hand side, Interfaces Free Bound., 13 (2011), 223-238.  doi: 10.4171/IFB/255.  Google Scholar

[16]

D. De SilvaF. Ferrari and S. Salsa, Two-phase problems with distributed sources: Regularity of the free boundary, Anal. PDE, 7 (2014), 267-310.  doi: 10.2140/apde.2014.7.267.  Google Scholar

[17]

D. De SilvaF. Ferrari and S. Salsa, Free boundary regularity for fully nonlinear non-homogeneous two-phase problems, J. Math. Pures Appl., 103 (2015), 658-694.  doi: 10.1016/j.matpur.2014.07.006.  Google Scholar

[18]

D. De SilvaF. Ferrari and S. Salsa, Perron's solutions for two-phase free boundary problems with distributed sources, Nonlinear Anal., 121 (2015), 382-402.  doi: 10.1016/j.na.2015.02.013.  Google Scholar

[19]

D. De SilvaF. Ferrari and S. Salsa, Regularity of higher order in two-phase free boundary problems, Trans. Amer. Math. Soc., 371 (2019), 3691-3720.  doi: 10.1090/tran/7550.  Google Scholar

[20]

D., F. Ferrari and S. Salsa, On the regularity of transmission problems for uniformly elliptic fully nonlinear equations, Two Nonlinear Days in Urbino 2017. Electron. J. Diff. Eqns., Conf., 25 (2018), 55–63.  Google Scholar

[21]

D. De Silva and D. Jerison, A singular energy minimizing free boundary, J. Reine Angew. Math., 635 (2009), 1-22.  doi: 10.1515/CRELLE.2009.074.  Google Scholar

[22]

D. De Silva and O. Savin, Lipschitz regularity of solutions to two-phase free boundary problems, Int. Math. Res. Notices., Volume 2019, 7, 2204–2222. doi: 10.1093/imrn/rnx194.  Google Scholar

[23]

D. De Silva and O. Savin, Global solutions to nonlinear two-phase free boundary problems, to appear in Comm. Pure Appl. Math. doi: 10.1002/cpa.21811.  Google Scholar

[24]

M. Engelstein, A two phase free boundary problem for the harmonic measure, Ann. Sci. Éc. Norm. Supér. (4), 49 (2016), 859–905. doi: 10.24033/asens.2297.  Google Scholar

[25]

M. Engelstein, L. Spolaor and B. Velichkov, Uniqueness of the blow-up at isolated singularities for the Alt-Caffarelli functional, arXiv: 1801.09276. Google Scholar

[26]

F. Ferrari, Two-phase problems for a class of fully nonlinear elliptic operators. Lipschitz free boundaries are $C^{1,\gamma}$, Amer. J. Math., 128 (2006), 541-571.  doi: 10.1353/ajm.2006.0023.  Google Scholar

[27]

F. Ferrari and S. Salsa, Regularity of the free boundary in two-phase problems for linear elliptic operators, Adv. Math., 214 (2007), 288-322.  doi: 10.1016/j.aim.2007.02.004.  Google Scholar

[28]

M. Feldman, Regularity for nonisotropic two-phase problems with Lipschitz free boundaries, Differential Integral Equations, 10 (1997), 1171-1179.   Google Scholar

[29]

M. Feldman, Regularity of Lipschitz free boundaries in two-phase problems for fully nonlinear elliptic equations, Indiana Univ. Math. J., 50 (2001), 1171-1200.  doi: 10.1512/iumj.2001.50.1921.  Google Scholar

[30]

D. KinderlehrerL. Nirenberg and J. Spruck, Regularity in elliptic free-boundary problems Ⅰ, J. Analyse Math., 34 (1978), 86-119.  doi: 10.1007/BF02790009.  Google Scholar

[31]

H. Koch, Classical solutions to phase transition problems are smooth, Comm. Partial Differential Equations, 23 (1998), 389-437.  doi: 10.1080/03605309808821351.  Google Scholar

[32]

D. Kriventsov and F. Lin, Regularity for shape optimizers: The nondegenerate case, Comm. Pure Appl. Math., 71 (2018), 1535-1596.  doi: 10.1002/cpa.21743.  Google Scholar

[33]

C. Lederman and N. Wolanski, A two phase elliptic singular perturbation problem with a forcing term, J. Math. Pures Appl., 86 (2006), 552-589.  doi: 10.1016/j.matpur.2006.10.008.  Google Scholar

[34]

G. Lu and P. Wang, On the uniqueness of a solution of a two phase free boundary problem, J. Funct. Anal., 258 (2010), 2817-2833.  doi: 10.1016/j.jfa.2009.08.008.  Google Scholar

[35]

C. B. Morrey, Jr., Multiple Integrals in the Calculus of Variations, Reprint of the 1966 edition Classics in Mathematics, Springer-Verlag, Berlin, 2008. doi: 10.1007/978-3-540-69952-1.  Google Scholar

[36]

N. Matevosyan and A. Petrosyan, Almost monotonicity formulas for elliptic and parabolic operators with variable coefficients, Comm. Pure Appl. Math., 64 (2011), 271-311.  doi: 10.1002/cpa.20349.  Google Scholar

[37]

E. V. Teixeira, A variational treatment for general elliptic equations of the flame propagation type: Regularity of the free boundary, Ann. Inst. H. Poincare Anal. Non Lineaire, 25 (2008), 633-658.  doi: 10.1016/j.anihpc.2007.02.006.  Google Scholar

[38]

E. V. Teixeira and L. Zhang, Monotonicity theorems for Laplace Beltrami operator on Riemannian manifolds, Adv. Math., 226 (2011), 1259-1284.  doi: 10.1016/j.aim.2010.08.006.  Google Scholar

[39]

S. SalsaF. Tulone and G. Verzini, Existence of viscosity solutions to two-phase problems for fully nonlinear equations with distributed sources, Mathematics in Engineering, 1 (2018), 147-173.  doi: 10.3934/Mine.2018.1.147.  Google Scholar

[40]

P. Y. Wang, Regularity of free boundaries of two-phase problems for fully nonlinear elliptic equations of second order. Ⅰ. Lipschitz free boundaries are $C^{1,\alpha}$, Comm. Pure Appl. Math., 53 (2000), 799-810.  doi: 10.1002/(SICI)1097-0312(200007)53:7<799::AID-CPA1>3.0.CO;2-Q.  Google Scholar

[41]

P. Y. Wang, Regularity of free boundaries of two-phase problems for fully nonlinear elliptic equations of second order. Ⅱ. Flat free boundaries are Lipschitz, Comm. in Partial Differential Equations, 27 (2002), 1497-1514.  doi: 10.1081/PDE-120005846.  Google Scholar

[42]

P. Y. Wang, Existence of solutions of two-phase free boundary for fully non linear equations of second order, J. of Geometric Analysis, (2002), 1497–1514. doi: 10.1007/BF02921886.  Google Scholar

show all references

References:
[1]

S. AgmonA. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Ⅰ, Comm. Pure Appl. Math., 12 (1959), 623-727.  doi: 10.1002/cpa.3160120405.  Google Scholar

[2]

H. W. Alt and L. Caffarelli, Existence and regularity for a minimum problem with free boundary, J. Reine und Angew. Math., 331 (1982), 105-144.   Google Scholar

[3]

H. W. AltL. Caffarelli and A. Friedman, Variational problems with two phases and their free boundaries, Trans. Amer. Math. Soc., 282 (1984), 431-461.  doi: 10.1090/S0002-9947-1984-0732100-6.  Google Scholar

[4]

M. D. Amaral and E. V. Teixeira, Free transmission problems, Comm. Math. Phys., 337 (2015), 1465-1489.  doi: 10.1007/s00220-015-2290-3.  Google Scholar

[5]

C. J AmickL. E. Fraenkel and J. F. Toland, On the Stokes conjecture for the wave of extreme form, Acta Math., 148 (1982), 193-214.  doi: 10.1007/BF02392728.  Google Scholar

[6]

R. Argiolas and F. Ferrari, Flat free boundaries regularity in two-phase problems for a class of fully nonlinear elliptic operators with variable coefficients, Interfaces Free Bound., 11 (2009), 177-199.  doi: 10.4171/IFB/208.  Google Scholar

[7]

G. K. Batchelor, On steady laminar flow with closed streamlines at large Reynolds number, J. Fluid. Mech., 1 (1956), 177-190.  doi: 10.1017/S0022112056000123.  Google Scholar

[8]

L. Caffarelli, A Harnack inequality approach to the regularity of free boundaries, Part $1$: Lipschitz free boundaries are $C_{\alpha }^{1}$, Rev. Mat. Iberoamericana, 3 (1987), 139-162.  doi: 10.4171/RMI/47.  Google Scholar

[9]

L. Caffarelli, A Harnack inequality approach to the regularity of free boundaries. Ⅱ. Flat free boundaries are Lipschitz, Comm. Pure Appl. Math., 42 (1989), 55-78.  doi: 10.1002/cpa.3160420105.  Google Scholar

[10]

L. Caffarelli, A Harnack inequality approach to the regularity of free boundaries, Part Ⅲ: Existence theory, compactness and dependence on $X$, Ann. Sc. Norm. Sup. Pisa Cl. SC. (4), 15 (1988), 383-602.   Google Scholar

[11]

L. A. CaffarelliD. De Silva and O. Savin, Two-phase anisotropic free boundary problems and applications to the Bellman equation in 2D, Arch. Ration. Mech. Anal., 228 (2018), 477-493.  doi: 10.1007/s00205-017-1198-9.  Google Scholar

[12]

L. Caffarelli and S. Salsa, A Geometric Approach to Free Boundary Problems, Graduate Studies in Mathematics, 68, American Mathematical Society, Providence, RI, 2005. doi: 10.1090/gsm/068.  Google Scholar

[13]

L. CaffarelliD. Jerison and C. Kenig, Some new monotonicity theorems with applications to free boundary problems, Ann. of Math., 155 (2002), 369-404.  doi: 10.2307/3062121.  Google Scholar

[14]

M. C. CeruttiF. Ferrari and S. Salsa, Two-phase problems for linear elliptic operators with variable coefficients: Lipschitz free boundaries are $C^{1,\gamma}$, Arch. Rational Mech. Anal., 171 (2004), 329-348.  doi: 10.1007/s00205-003-0290-5.  Google Scholar

[15]

D. De Silva, Free boundary regularity for a problem with right hand side, Interfaces Free Bound., 13 (2011), 223-238.  doi: 10.4171/IFB/255.  Google Scholar

[16]

D. De SilvaF. Ferrari and S. Salsa, Two-phase problems with distributed sources: Regularity of the free boundary, Anal. PDE, 7 (2014), 267-310.  doi: 10.2140/apde.2014.7.267.  Google Scholar

[17]

D. De SilvaF. Ferrari and S. Salsa, Free boundary regularity for fully nonlinear non-homogeneous two-phase problems, J. Math. Pures Appl., 103 (2015), 658-694.  doi: 10.1016/j.matpur.2014.07.006.  Google Scholar

[18]

D. De SilvaF. Ferrari and S. Salsa, Perron's solutions for two-phase free boundary problems with distributed sources, Nonlinear Anal., 121 (2015), 382-402.  doi: 10.1016/j.na.2015.02.013.  Google Scholar

[19]

D. De SilvaF. Ferrari and S. Salsa, Regularity of higher order in two-phase free boundary problems, Trans. Amer. Math. Soc., 371 (2019), 3691-3720.  doi: 10.1090/tran/7550.  Google Scholar

[20]

D., F. Ferrari and S. Salsa, On the regularity of transmission problems for uniformly elliptic fully nonlinear equations, Two Nonlinear Days in Urbino 2017. Electron. J. Diff. Eqns., Conf., 25 (2018), 55–63.  Google Scholar

[21]

D. De Silva and D. Jerison, A singular energy minimizing free boundary, J. Reine Angew. Math., 635 (2009), 1-22.  doi: 10.1515/CRELLE.2009.074.  Google Scholar

[22]

D. De Silva and O. Savin, Lipschitz regularity of solutions to two-phase free boundary problems, Int. Math. Res. Notices., Volume 2019, 7, 2204–2222. doi: 10.1093/imrn/rnx194.  Google Scholar

[23]

D. De Silva and O. Savin, Global solutions to nonlinear two-phase free boundary problems, to appear in Comm. Pure Appl. Math. doi: 10.1002/cpa.21811.  Google Scholar

[24]

M. Engelstein, A two phase free boundary problem for the harmonic measure, Ann. Sci. Éc. Norm. Supér. (4), 49 (2016), 859–905. doi: 10.24033/asens.2297.  Google Scholar

[25]

M. Engelstein, L. Spolaor and B. Velichkov, Uniqueness of the blow-up at isolated singularities for the Alt-Caffarelli functional, arXiv: 1801.09276. Google Scholar

[26]

F. Ferrari, Two-phase problems for a class of fully nonlinear elliptic operators. Lipschitz free boundaries are $C^{1,\gamma}$, Amer. J. Math., 128 (2006), 541-571.  doi: 10.1353/ajm.2006.0023.  Google Scholar

[27]

F. Ferrari and S. Salsa, Regularity of the free boundary in two-phase problems for linear elliptic operators, Adv. Math., 214 (2007), 288-322.  doi: 10.1016/j.aim.2007.02.004.  Google Scholar

[28]

M. Feldman, Regularity for nonisotropic two-phase problems with Lipschitz free boundaries, Differential Integral Equations, 10 (1997), 1171-1179.   Google Scholar

[29]

M. Feldman, Regularity of Lipschitz free boundaries in two-phase problems for fully nonlinear elliptic equations, Indiana Univ. Math. J., 50 (2001), 1171-1200.  doi: 10.1512/iumj.2001.50.1921.  Google Scholar

[30]

D. KinderlehrerL. Nirenberg and J. Spruck, Regularity in elliptic free-boundary problems Ⅰ, J. Analyse Math., 34 (1978), 86-119.  doi: 10.1007/BF02790009.  Google Scholar

[31]

H. Koch, Classical solutions to phase transition problems are smooth, Comm. Partial Differential Equations, 23 (1998), 389-437.  doi: 10.1080/03605309808821351.  Google Scholar

[32]

D. Kriventsov and F. Lin, Regularity for shape optimizers: The nondegenerate case, Comm. Pure Appl. Math., 71 (2018), 1535-1596.  doi: 10.1002/cpa.21743.  Google Scholar

[33]

C. Lederman and N. Wolanski, A two phase elliptic singular perturbation problem with a forcing term, J. Math. Pures Appl., 86 (2006), 552-589.  doi: 10.1016/j.matpur.2006.10.008.  Google Scholar

[34]

G. Lu and P. Wang, On the uniqueness of a solution of a two phase free boundary problem, J. Funct. Anal., 258 (2010), 2817-2833.  doi: 10.1016/j.jfa.2009.08.008.  Google Scholar

[35]

C. B. Morrey, Jr., Multiple Integrals in the Calculus of Variations, Reprint of the 1966 edition Classics in Mathematics, Springer-Verlag, Berlin, 2008. doi: 10.1007/978-3-540-69952-1.  Google Scholar

[36]

N. Matevosyan and A. Petrosyan, Almost monotonicity formulas for elliptic and parabolic operators with variable coefficients, Comm. Pure Appl. Math., 64 (2011), 271-311.  doi: 10.1002/cpa.20349.  Google Scholar

[37]

E. V. Teixeira, A variational treatment for general elliptic equations of the flame propagation type: Regularity of the free boundary, Ann. Inst. H. Poincare Anal. Non Lineaire, 25 (2008), 633-658.  doi: 10.1016/j.anihpc.2007.02.006.  Google Scholar

[38]

E. V. Teixeira and L. Zhang, Monotonicity theorems for Laplace Beltrami operator on Riemannian manifolds, Adv. Math., 226 (2011), 1259-1284.  doi: 10.1016/j.aim.2010.08.006.  Google Scholar

[39]

S. SalsaF. Tulone and G. Verzini, Existence of viscosity solutions to two-phase problems for fully nonlinear equations with distributed sources, Mathematics in Engineering, 1 (2018), 147-173.  doi: 10.3934/Mine.2018.1.147.  Google Scholar

[40]

P. Y. Wang, Regularity of free boundaries of two-phase problems for fully nonlinear elliptic equations of second order. Ⅰ. Lipschitz free boundaries are $C^{1,\alpha}$, Comm. Pure Appl. Math., 53 (2000), 799-810.  doi: 10.1002/(SICI)1097-0312(200007)53:7<799::AID-CPA1>3.0.CO;2-Q.  Google Scholar

[41]

P. Y. Wang, Regularity of free boundaries of two-phase problems for fully nonlinear elliptic equations of second order. Ⅱ. Flat free boundaries are Lipschitz, Comm. in Partial Differential Equations, 27 (2002), 1497-1514.  doi: 10.1081/PDE-120005846.  Google Scholar

[42]

P. Y. Wang, Existence of solutions of two-phase free boundary for fully non linear equations of second order, J. of Geometric Analysis, (2002), 1497–1514. doi: 10.1007/BF02921886.  Google Scholar

[1]

Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020395

[2]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[3]

Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021028

[4]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[5]

Huijuan Song, Bei Hu, Zejia Wang. Stationary solutions of a free boundary problem modeling the growth of vascular tumors with a necrotic core. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 667-691. doi: 10.3934/dcdsb.2020084

[6]

Lei Yang, Lianzhang Bao. Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1083-1109. doi: 10.3934/dcdsb.2020154

[7]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[8]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[9]

Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002

[10]

Marek Macák, Róbert Čunderlík, Karol Mikula, Zuzana Minarechová. Computational optimization in solving the geodetic boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 987-999. doi: 10.3934/dcdss.2020381

[11]

Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050

[12]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[13]

Claude-Michel Brauner, Luca Lorenzi. Instability of free interfaces in premixed flame propagation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 575-596. doi: 10.3934/dcdss.2020363

[14]

Aurelia Dymek. Proximality of multidimensional $ \mathscr{B} $-free systems. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021013

[15]

Anna Anop, Robert Denk, Aleksandr Murach. Elliptic problems with rough boundary data in generalized Sobolev spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020286

[16]

Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179

[17]

Rong Wang, Yihong Du. Long-time dynamics of a diffusive epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020360

[18]

Maoli Chen, Xiao Wang, Yicheng Liu. Collision-free flocking for a time-delay system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1223-1241. doi: 10.3934/dcdsb.2020251

[19]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[20]

Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (300)
  • HTML views (377)
  • Cited by (0)

Other articles
by authors

[Back to Top]