\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Standing and travelling waves in a parabolic-hyperbolic system

  • * Corresponding author: Hirofumi Izuhara

    * Corresponding author: Hirofumi Izuhara 
Abstract / Introduction Full Text(HTML) Figure(16) Related Papers Cited by
  • We consider a nonlinear system of partial differential equations which describes the dynamics of two types of cell densities with contact inhibition. After a change of variables the system turns out to be parabolic-hyperbolic and admits travelling wave solutions which solve a 3D dynamical system. Compared to the scalar Fisher-KPP equation, the structure of the travelling wave solutions is surprisingly rich and to unravel part of it is the aim of the present paper. In particular, we consider a parameter regime where the minimal wave velocity of the travelling wave solutions is negative. We show that there exists a branch of travelling wave solutions for any nonnegative wave velocity, which is not connected to the travelling wave solution with minimal wave velocity. The travelling wave solutions with nonnegative wave velocity are strictly positive, while the solution with minimal one is segregated in the sense that the product $ uv $ vanishes.

    Mathematics Subject Classification: Primary: 35C07, 35M30, 70K05; Secondary: 35Q92, 92C17.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Dependency of the wave velocity of segregated travelling wave solutions on $ \alpha $. The horizontal and the vertical axes are respectively the wave velocity $ \overline c $ and the value $ \alpha $. The parameter values are $ \gamma = 1 $ and $ k = 2 $

    Figure 2.  Typical profiles of segregated TWs. The parameter values are $ \gamma = 1 $ and $ k = 2 $, the same as the ones in Figure 1. The solid and the dashed curves respectively denote $ U $ and $ V $. (a) $ \overline{c} = 0.2238529804 $ (b) $ \overline{c} = 0 $ (c) $ \overline{c} = -0.2895584564 $

    Figure 3.  Profiles of overlapping TWs. The solid and the dashed curves respectively denote $ U $ and $ V $ and the gray curve denotes $ U+V $. The parameter values are $ \alpha = 1 $, $ k = 2 $ and $ \gamma = 1 $. For this parameter setting, the velocity of segregated TW is $ \overline{c} = 0.4094908611 $

    Figure 4.  Profiles of overlapping TWs. The solid and the dashed curves respectively denote $ U $ and $ V $ and the gray curve denotes $ U+V $. The parameter values are $ \alpha = 4 $, $ k = 2 $ and $ \gamma = 1 $. For this parameter setting, the velocity of segregated TW is $ \overline{c} = -0.2895584564 $. See also Figure 2(c)

    Figure 5.  Profiles of overlapping TWs. The solid and the dashed curves respectively denote $ U $ and $ V $ and the gray curve denotes $ U+V $. The parameter values are $ \alpha = 4 $, $ k = 2 $, $ \gamma = 0.4 $ and $ c = 1 $

    Figure 6.  Profiles of $ t_\gamma $ in cases (ⅰ), (ⅱ) and (ⅲ) of Lemma 2.1

    Figure 7.  Profiles of $ \Omega_1 $ and $ \Omega_2 $ in cases (ii) and (iii) of Lemma 2.2

    Figure 8.  The case $ \lambda_1<\lambda_2 $ and $ \gamma>k(\alpha-1)/(k-1) $: $ (\gamma, c) = (10, 1) $

    Figure 9.  The case $ \lambda_1>\lambda_2 $ and $ \gamma>k(\alpha-1)/(k-1) $: $ (\gamma, c) = (9, 2) $

    Figure 10.  The case $ \lambda_1<\lambda_2 $ and $ 0<\gamma<k(\alpha-1)/(k-1) $: $ (\gamma, c) = (2, 1) $ ($ k = 4 $ and $ \alpha = 10 $)

    Figure 11.  The case $ \lambda_1>\lambda_2 $ and $ 0<\gamma<k(\alpha-1)/(k-1) $: $ (\gamma, c) = (3, 1) $ ($ k = 4 $ and $ \alpha = 10 $)

    Figure 12.  The case $ \Lambda_1<\Lambda_2 $ and $ \gamma>\alpha(k-1)/(\alpha-1) $: $ (\gamma, c) = (10, 1) $

    Figure 13.  The case $ \Lambda_1>\Lambda_2 $ and $ \gamma>\alpha(k-1)/(\alpha-1) $: $ (\gamma, c) = (25, 0.5) $ ($ k = 8 $ and $ \alpha = 20 $)

    Figure 14.  The case $ \Lambda_1<\Lambda_2 $ and $ 0<\gamma<\alpha(k-1)/(\alpha-1) $: $ (\gamma, c) = (0.00066, 0.02475) $ ($ k = 1.0004 $ and $ \alpha = 2.5020 $)

    Figure 15.  The case $ \Lambda_1>\Lambda_2 $ and $ 0<\gamma<\alpha(k-1)/(\alpha-1) $: $ (\gamma, c) = (3, 1) $ ($ k = 4 $ and $ \alpha = 10 $)

    Figure 16.  Global portrait of the system (Ⅰ) $ (\gamma, c) = (10, 1) $

  • [1] M. BertschR. Dal Passo and M. Mimura, A free boundary problem arising in a simplified tumour growth model of contact inhibition, Interfaces Free Bound., 12 (2010), 235-250.  doi: 10.4171/ifb/233.
    [2] M. BertschD. HilhorstH. Izuhara and M. Mimura, A nonlinear parabolic-hyperbolic system for contact inhibition of cell-growth, Differ. Equ. Appl., 4 (2012), 137-157.  doi: 10.7153/dea-04-09.
    [3] M. BertschD. HilhorstH. IzuharaM. Mimura and T. Wakasa, Travelling wave solutions of a parabolic-hyperbolic system for contact inhibition of cell-growth, European J. Appl. Math., 26 (2015), 297-323.  doi: 10.1017/S0956792515000042.
    [4] M. Bertsch, D. Hilhorst, H. Izuhara, M. Mimura and T. Wakasa, A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic Fisher KPP equation, to appear in Discret. Contin. Dyn. Syst. Ser. A.
    [5] M. BertschM. Mimura and T. Wakasa, Modeling contact inhibition of growth: Traveling waves, Netw. Heterog. Media, 8 (2013), 131-147.  doi: 10.3934/nhm.2013.8.131.
    [6] Z. Biró, Stability of travelling waves for degenerate reaction-diffusion equations of KPP-type, Adv. Nonlinear Stud., 2 (2002), 357-371.  doi: 10.1515/ans-2002-0402.
    [7] M. Bramson, Convergence of solutions of the Kolmogorov equation to travelling waves, Mem. Amer. Math. Soc., 44 (1983), ⅳ+190 pp. doi: 10.1090/memo/0285.
    [8] J. A. CarrilloS. FagioliF. Santambrogio and M. Schmidtchen, Splitting schemes and segregation in reaction cross-diffusion systems, SIAM J. Math. Anal., 50 (2018), 5695-5718.  doi: 10.1137/17M1158379.
    [9] M. A. J. ChaplainL. Graziano and L. Preziosi, Mathematical modelling of the loss of tissue compression responsiveness and its role in solid tumour development, Mathematical Medicine and Biology, 23 (2006), 197-229.  doi: 10.1093/imammb/dql009.
    [10] R. A. Fisher, The wave of advance of advantageous genes, Annals of Eugenics, 7 (1937), 355-369. 
    [11] S. Kamin and P. Rosenau, Convergence to the travelling wave solution for a nonlinear reactiondiffusion equation, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei(9) Mat. Appl., 15 (2004), 271–280.
    [12] A. N. KolmogorovI. G. Petrovskii and N. S. Piskunov, Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bull. Univ. État Moscou, Série Internationale A, 1 (1937), 1-26. 
    [13] J. D. Murray, Mathematical Biology. I, Springer-Verlag, New York, 2002.
    [14] J. D. Murray, Mathematical Biology. II, Springer-Verlag, New York, 2003.
    [15] J. A. Sherratt, Wavefront propagation in a competition equation with a new motility term modelling contact inhibition between cell populations, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 456 (2000), 2365-2386.  doi: 10.1098/rspa.2000.0616.
    [16] J. A. Sherratt and M. A. J. Chaplain, A new mathematical model for avascular tumour growth, J. Math. Biol., 43 (2001), 291-312.  doi: 10.1007/s002850100088.
  • 加载中

Figures(16)

SHARE

Article Metrics

HTML views(1983) PDF downloads(381) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return