In this paper, we develop an operator splitting scheme for the fractional kinetic Fokker-Planck equation (FKFPE). The scheme consists of two phases: a fractional diffusion phase and a kinetic transport phase. The first phase is solved exactly using the convolution operator while the second one is solved approximately using a variational scheme that minimizes an energy functional with respect to a certain Kantorovich optimal transport cost functional. We prove the convergence of the scheme to a weak solution to FKFPE. As a by-product of our analysis, we also establish a variational formulation for a kinetic transport equation that is relevant in the second phase. Finally, we discuss some extensions of our analysis to more complex systems.
Citation: |
[1] | P. Aceves-Sanchez and L. Cesbron, Fractional diffusion limit for a fractional Vlasov-Fokker-Planck equation, SIAM J. Math. Anal., 51 (2019), 469-488. doi: 10.1137/17M1152073. |
[2] | M. Agueh, Local existence of weak solutions to kinetic models of granular media, Arch. Ration. Mech. Anal., 221 (2016), 917-959. doi: 10.1007/s00205-016-0975-1. |
[3] | N. Alibaud, Entropy formulation for fractal conservation laws, J. Evol. Equ., 7 (2007), 145-175. doi: 10.1007/s00028-006-0253-z. |
[4] | L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd edition, Lectures in Mathematics. ETH Zürich, Birkhauser, Basel, 2008. |
[5] | D. Applebaum, Lévy Processes and Stochastic Calculus, vol. 116 of Cambridge Studies in Advanced Mathematics, 2nd edition, Cambridge University Press, Cambridge, 2009. doi: 10.1017/CBO9780511809781. |
[6] | S. Arnrich, A. Mielke, M. A. Peletier, G. Savaré and M. Veneroni, Passing to the limit in a Wasserstein gradient flow: From diffusion to reaction, Calc. Var. Partial Differential Equations, 44 (2012), 419-454. doi: 10.1007/s00526-011-0440-9. |
[7] | T. Bodineau and R. Lefevere, Large deviations of lattice Hamiltonian dynamics coupled to stochastic thermostats, J. Stat. Phys., 133 (2008), 1-27. doi: 10.1007/s10955-008-9601-4. |
[8] | M. Bowles and M. Agueh, Weak solutions to a fractional Fokker–Planck equation via splitting and Wfasserstein gradient flow, Applied Mathematics Letters, 42 (2015), 30–35, URL http://www.sciencedirect.com/science/article/pii/S0893965914003346. doi: 10.1016/j.aml.2014.10.008. |
[9] | E. A. Carlen and W. Gangbo, Solution of a model Boltzmann equation via steepest descent in the 2-Wasserstein metric, Arch. Ration. Mech. Anal., 172 (2004), 21-64. doi: 10.1007/s00205-003-0296-z. |
[10] | J. A. Carrillo, R. J. McCann and C. Villani, Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates, Rev. Mat. Iberoamericana, 19 (2003), 971-1018. doi: 10.4171/RMI/376. |
[11] | L. Cesbron, A. Mellet and K. Trivisa, Anomalous transport of particles in plasma physics, Applied Mathematics Letters, 25 (2012), 2344-2348, URL http://www.sciencedirect.com/science/article/pii/S0893965912003163. doi: 10.1016/j.aml.2012.06.029. |
[12] | L. Cesbron, Anomalous diffusion limit of kinetic equations in spatially bounded domains, Comm. Math. Phys., 364 (2018), 233-286. doi: 10.1007/s00220-018-3158-0. |
[13] | Z.-Q. Chen and X. Zhang, Propagation of regularity in $l^p$-spaces for Kolmogorov type hypoelliptic operators, Journal of Evolution Equations, 2019, 1–29, arXiv: 1706.02181. doi: 10.1007/s00028-019-00505-9. |
[14] | Z.-Q. Chen and X. Zhang, $L^p$-maximal hypoelliptic regularity of nonlocal kinetic Fokker-Planck operators, J. Math. Pures Appl. (9), 116 (2018), 52-87. doi: 10.1016/j.matpur.2017.10.003. |
[15] | F. Delarue and S. Menozzi, Density estimates for a random noise propagating through a chain of differential equations, J. Funct. Anal., 259 (2010), 1577–1630, URL http://dx.doi.org/10.1016/j.jfa.2010.05.002. doi: 10.1016/j.jfa.2010.05.002. |
[16] | J. Droniou, T. Gallouet and J. Vovelle, Global solution and smoothing effect for a non-local regularization of a hyperbolic equation, J. Evol. Equ., 3 (2003), 499–521, Dedicated to Philippe Bénilan. doi: 10.1007/s00028-003-0503-1. |
[17] | M. H. Duong, Long time behaviour and particle approximation of a generalised Vlasov dynamic, Nonlinear Anal., 127 (2015), 1-16. doi: 10.1016/j.na.2015.06.018. |
[18] | M. H. Duong, A. Lamacz, M. A. Peletier and U. Sharma, Variational approach to coarse-graining of generalized gradient flows, Calc. Var. Partial Differential Equations, 56 (2017), Art. 100, 65pp. doi: 10.1007/s00526-017-1186-9. |
[19] | M. H. Duong, M. A. Peletier and J. Zimmer, Conservative-dissipative approximation schemes for a generalized kramers equation, Mathematical Methods in the Applied Sciences, 37 (2014), 2517-2540. doi: 10.1002/mma.2994. |
[20] | M. H. Duong and H. M. Tran, Analysis of the mean squared derivative cost function, Mathematical Methods in the Applied Sciences, 40 (2017), 5222-5240. doi: 10.1002/mma.4382. |
[21] | M. H. Duong and H. M. Tran, On the fundamental solution and a variational formulation for a degenerate diffusion of Kolmogorov type, Discrete Contin. Dyn. Syst., 38 (2018), 3407-3438. doi: 10.3934/dcds.2018146. |
[22] | B. Düring, D. Matthes and J. P. Milišić, A gradient flow scheme for nonlinear fourth order equations, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 935-959. doi: 10.3934/dcdsb.2010.14.935. |
[23] | J.-P. Eckmann and M. Hairer, Non-equilibrium statistical mechanics of strongly anharmonic chains of oscillators, Comm. Math. Phys., 212 (2000), 105-164. doi: 10.1007/s002200000216. |
[24] | M. Erbar, Gradient flows of the entropy for jump processes, Ann. Inst. H. Poincare Probab. Statist., 50 (2014), 920-945. doi: 10.1214/12-AIHP537. |
[25] | W. Gangbo and M. Westdickenberg, Optimal transport for the system of isentropic Euler equations, Comm. Partial Differential Equations, 34 (2009), 1041-1073. doi: 10.1080/03605300902892345. |
[26] | P. Hänggi, P. Talkner and M. Borkovec, Reaction-rate theory: fifty years after Kramers, Rev. Modern Phys., 62 (1990), 251-341. doi: 10.1103/RevModPhys.62.251. |
[27] | H. Holden, K. H. Karlsen, K.-A. Lie and N. H. Risebro, Splitting Methods for Partial Differential Equations with Rough Solutions, EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich, 2010, Analysis and MATLAB programs. doi: 10.4171/078. |
[28] | C. Huang, A variational principle for the Kramers equation with unbounded external forces, J. Math. Anal. Appl., 250 (2000), 333-367. doi: 10.1006/jmaa.2000.7109. |
[29] | L. Huang, S. Menozzi and E. Priola, $L^p$ estimates for degenerate non-local Kolmogorov operators, J. Math. Pures Appl. (9), 121 (2019), 162-215. doi: 10.1016/j.matpur.2017.12.008. |
[30] | R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the fokker-planck equation, SIAM Journal on Mathematical Analysis, 29 (1998), 1-17. doi: 10.1137/S0036141096303359. |
[31] | D. Kinderlehrer and A. Tudorascu, Transport via mass transportation, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 311-338. doi: 10.3934/dcdsb.2006.6.311. |
[32] | H. A. Kramers, Brownian motion in a field of force and the diffusion model of chemical reactions, Physica, 7 (1940), 284-304. doi: 10.1016/S0031-8914(40)90098-2. |
[33] | M. Kwaśnicki, Ten equivalent definitions of the fractional Laplace operator, Fract. Calc. Appl. Anal., 20 (2017), 7-51. doi: 10.1515/fca-2017-0002. |
[34] | L. Lafleche, Fractional fokker-planck equation with general confinement force, 2018. |
[35] | E. Nelson, Dynamical Theories of Brownian Motion, Princeton University Press, Princeton, N.J., 1967. |
[36] | M. Ottobre and G. A. Pavliotis, Asymptotic analysis for the generalized Langevin equation, Nonlinearity, 24 (2011), 1629-1653. doi: 10.1088/0951-7715/24/5/013. |
[37] | A. Pascucci, Kolmogorov equations in physics and in finance, Elliptic and Parabolic Problems, Birkhäuser Basel, Basel, 63 (2005), 353–364. doi: 10.1007/3-7643-7384-9_35. |
[38] | H. Risken, The Fokker-Planck Equation: Methods of Solutions and Applications, Springer Series in Synergetics, 18. Springer-Verlag, Berlin, 1984. URL http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/354061530X. doi: 10.1007/978-3-642-96807-5. |
[39] | E. Sandier and S. Serfaty, Gamma-convergence of gradient flows with applications to Ginzburg-Landau, Comm. Pure Appl. Math., 57 (2004), 1627-1672. doi: 10.1002/cpa.20046. |
[40] | U. Stefanelli, The Brezis–Ekeland principle for doubly nonlinear equations, SIAM Journal on Control and Optimization, 47 (2008), 1615-1642. doi: 10.1137/070684574. |
[41] | J. L. Vázquez, Nonlinear diffusion with fractional laplacian operators, Nonlinear Partial Differential Equations, Springer, Heidelberg, 7 (2012), 271–298. doi: 10.1007/978-3-642-25361-4_15. |
[42] | J. L. Vázquez, Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 857-885. doi: 10.3934/dcdss.2014.7.857. |
[43] | J. L. Vázquez, The mathematical theories of diffusion: Nonlinear and fractional diffusion, in Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Directions, vol. 2186 of Lecture Notes in Math., Springer, Cham, 2017,205–278. |
[44] | C. Villani, Topics in Optimal Transportation, vol. 58 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2003. doi: 10.1007/b12016. |