\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Product of expansive Markov maps with hole

  • * Corresponding author

    * Corresponding author

The research of the first author is supported by the Council of Scientific & Industrial Research (CSIR), India (File no. 09/1020(0133)/2018-EMR-I), and the second author is supported by Center for Research on Environment and Sustainable Technologies (CREST), IISER Bhopal, CoE funded by the Ministry of Human Resource Development (MHRD), India

Abstract / Introduction Full Text(HTML) Figure(8) / Table(9) Related Papers Cited by
  • We consider product of expansive Markov maps on an interval with hole which is conjugate to a subshift of finite type. For certain class of maps, it is known that the escape rate into a given hole does not just depend on its size but also on its position in the state space. We illustrate this phenomenon for maps considered here. We compare the escape rate into a connected hole and a hole which is a union of holes with a certain property, but have same measure. This gives rise to some interesting combinatorial problems.

    Mathematics Subject Classification: Primary: 37A05, 37B10.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Examples of expansive Markov maps

    Figure 2.  Basic rectangles when $M = 3$, $N = 2$ and (left) $m = n = 1$; $R_{i,j,1,1}\sim C_{2i+j}$ and (right) $m = n = 2$; (1) $R_{5,2,2,2}\sim C_{34}$, (2) $R_{1,1,2,2}\sim C_{03}$

    Figure 3.  $M = 3,N = 2,m = 2,n = 1$, each rectangle is a union of two basic rectangles: (1) $R_{0,0,2,1} = R_{0,0,2,2}\cup R_{0,1,2,2}\sim C_{00}\cup C_{01}$, (2) $R_{6,1,2,1} = R_{6,2,2,2}\cup R_{6,3,2,2}\sim C_{50}\cup C_{51}$

    Figure 4.  Escape rates into basic rectangles for $M = 3, N = 2$: (left) $m = n = 2$; $\rho(A)\sim 0.025$, $\rho(B)\sim 0.029$; (right) $m = n = 3$; $\rho(A)\sim 0.0039$, $\rho(B)\sim 0.0046$, $\rho(C)\sim 0.0047$. In each square, rectangles with the same color have the same escape rate

    Figure 6.  Escape rates for rectangles when (left) $m = 1,n = 2$; $\rho(A)\sim 0.08$, $\rho(B)\sim 0.1$; (right) $m = 1,n = 3$; $\rho(A)\sim 0.036$, $\rho(B)\sim 0.042$, $\rho(C)\sim 0.047$. In each square, rectangles with the same color have the same escape rate

    Figure 5.  Escape rates of rectangles when $M = 3$, $N = 2$, $m = 2$, $n = 1$, $\rho(A)\sim 0.051$, $\rho(B)\sim 0.061$. Rectangles with the same color have the same escape rate

    Figure 7.  Rectangles corresponding to the collection $S$ in Construction 1 for $m = 3$ and $q = 6$ for the map $T_{3,2}$ on $\mathbb{T}^2$

    Figure 8.  Maps conjugate to shift map on subshift of finite type

    Table 1.  $m = 1,n = 2$, each rectangle corresponds to union of three cylinders based at words of length two. Only two possible values of the escape rate, approximate values are shown

    $R_{i,j,m,n}$ Corresponding words $\tau_{\text{min}}$ $\rho(R_{i,j,m,n})\sim$
    $R_{0,0,1,2}$ $00,02,04$ 1 0.08
    $R_{0,1,1,2}$ $01,03,05$ 2 0.1
    $R_{0,2,1,2}$ $10,12,14$ 2 0.1
    $R_{0,3,1,2}$ $11,13,15$ 1 0.08
    $R_{1,0,1,2}$ $20,22,24$ 1 0.08
    $R_{1,1,1,2}$ $21,23,25$ 2 0.1
    $R_{1,2,1,2}$ $30,32,34$ 2 0.1
    $R_{1,3,1,2}$ $31,33,35$ 1 0.08
    $R_{2,0,1,2}$ $40,42,44$ 1 0.08
    $R_{2,1,1,2}$ $41,43,45$ 2 0.1
    $R_{2,2,1,2}$ $50,52,54$ 2 0.1
    $R_{2,3,1,2}$ $51,53,55$ 1 0.08
     | Show Table
    DownLoad: CSV

    Table 2.  $m = 1,n = 3$, each rectangle corresponds to union of nine cylinders based at words of length three. Only three possible values of the escape rate, approximate values are shown

    $R_{i,j,m,n}$ Corresponding words $\tau_{\text{min}}$ $\rho(R_{i,j,m,n})\sim$
    $R_{0,0,1,3}$ $000,002,004,020,022,024,040,042,044$ 1 0.036
    $R_{0,1,1,3}$ $001,003,005,021,023,025,041,043,045$ 3 0.047
    $R_{0,2,1,3}$ $010,012,014,030,032,034,050,052,054$ 2 0.042
    $R_{0,3,1,3}$ $011,013,015,031,033,035,051,053,055$ 3 0.047
    $R_{0,4,1,3}$ $100,102,104,120,122,124,140,142,144$ 3 0.047
    $R_{0,5,1,3}$ $101,103,105,121,123,125,141,143,145$ 2 0.042
    $R_{0,6,1,3}$ $110,112,114,130,132,134,150,152,154$ 3 0.047
    $R_{0,7,1,3}$ $111,113,115,131,133,135,151,153,155$ 1 0.036
    $R_{1,0,1,3}$ $200,202,204,220,222,224,240,242,244$ 1 0.036
    $R_{1,1,1,3}$ $201,203,205,221,223,225,241,243,245$ 3 0.047
    $R_{1,2,1,3}$ $210,212,214,230,232,234,250,252,254$ 2 0.042
    $R_{1,3,1,3}$ $211,213,215,231,233,235,251,253,255$ 3 0.047
    $R_{1,4,1,3}$ $300,302,304,320,322,324,340,342,344$ 3 0.047
    $R_{1,5,1,3}$ $301,303,305,321,323,325,341,343,345$ 2 0.042
    $R_{1,6,1,3}$ $310,312,314,330,332,334,350,352,354$ 3 0.047
    $R_{1,7,1,3}$ $311,313,315,331,333,335,351,353,355$ 1 0.036
    $R_{2,0,1,3}$ $400,402,404,420,422,424,440,442,444$ 1 0.036
    $R_{2,1,1,3}$ $401,403,405,421,423,425,441,443,445$ 3 0.047
    $R_{2,2,1,3}$ $410,412,414,430,432,434,450,452,454$ 2 0.042
    $R_{2,3,1,3}$ $411,413,415,431,433,435,451,453,455$ 3 0.047
    $R_{2,4,1,3}$ $500,502,504,520,522,524,540,542,544$ 3 0.047
    $R_{2,5,1,3}$ $501,503,505,521,523,525,541,543,545$ 2 0.042
    $R_{2,6,1,3}$ $510,512,514,530,532,534,550,552,554$ 3 0.047
    $R_{2,7,1,3}$ $511,513,515,531,533,535,551,553,555$ 1 0.036
     | Show Table
    DownLoad: CSV

    Table 3.  $m = 4,n = 2$, each rectangle corresponds to union of four cylinders based at words of length four. Only five possible values of the escape rate, approximate values are shown

    $R_{i,j,m,n}$ Corresponding words $\tau_{\text{min}}$ $\rho(R_{i,j,m,n})\sim$
    $R_{0,0,4,2}$ $0000,0001,0010,0011$ 1 0.0028
    $R_{1,0,4,2}$ $0002,0003,0012,0013$ 4 0.00312
    $R_{2,0,4,2}$ $0020,0021,0030,0031$ 3 0.00309
    $R_{10,0,4,2}$ $0202,0203,0212,0213$ 2 0.00303
    $R_{0,1,4,2}$ $0100,0101,0110,0111$ 2 0.00301
    $R_{1,1,4,2}$ $0102,0103,0112,0113$ 4 0.00312
    $R_{2,1,4,2}$ $0120,0121,0130,0131$ 3 0.00309
    $R_{10,1,4,2}$ $0302,0303,0312,0313$ 2 0.00303
    $R_{0,2,4,2}$ $1000,1001,1010,1011$ 2 0.00301
     | Show Table
    DownLoad: CSV

    Table 4.  Upper bound on $m$ in Construction 2 with $q = 6$

    $n$ $\ell=1$ $\ell=2$ $\ell=3$ $\ell=4$
    1 1 2 2 2
    2 10 7 5 3
    3 20 11 7 5
    4 30 15 10 7
    5 40 20 12 8
    6 50 24 15 10
    7 59 29 18 12
    8 69 33 20 13
    9 79 38 23 15
     | Show Table
    DownLoad: CSV

    Table 5.  Escape rates for $f$ into holes corresponding to a cylinder based at an allowed word of length two

    Holes $H=R_{ij}$ $\tilde{\mu}(H)$ $\rho(H)\sim$ $\tau_{\text{min}}(H)$
    $R_{00}$ 0.2 0.188 1
    $R_{01}$, $R_{02}$, $R_{10}$, $R_{20}$ 0.124 0.153 2
    $R_{03}$, $R_{12}$, $R_{21}$, $R_{30}$ 0.076 0.081 2
     | Show Table
    DownLoad: CSV

    Table 6.  Escape rates for $f$ into holes corresponding to a cylinder based at an allowed word of length three

    Holes $H=R_{ijk}$ $\tilde{\mu}(H)$ $\rho(H)\sim$ $\tau_{\text{min}}(H)$
    $R_{010}$, $R_{020}$, $R_{030}$ 0.076 0.081 2
    $R_{000}$ 0.076 0.057 1
    $R_{001}$, $R_{002}$, $R_{012}$, $R_{021}$, $R_{100}$, $R_{120}$, $R_{200}$, $R_{210}$ 0.047 0.054 3
    $R_{003}$, $R_{102}$, $R_{201}$, $R_{300}$ 0.029 0.031 3
    $R_{101}$, $R_{121}$, $R_{202}$, $R_{212}$ 0.029 0.028 2
    $R_{103}$, $R_{203}$, $R_{301}$, $R_{302}$ 0.018 0.019 3
    $R_{303}$ 0.011 0.010 2
     | Show Table
    DownLoad: CSV

    Table 7.  Escape rates for $f = T_2\times T_2\times S$ into holes corresponding to a cylinder based at an allowed word of length two

    Holes $H$ $\tilde{\mu}(H)\sim $ $\rho(H)\sim$ $\tau_{\text{min}}(H)$
    $R_{aa}$, $a$ is even 0.0279 0.0251 1
    $R_{ab}$, exactly one of $a$ or $b$ is even 0.0173 0.0176 2
    $R_{ab}$, both $a\ne b$ are even 0.0279 0.0293 2
     | Show Table
    DownLoad: CSV

    Table 8.  Escape rate for $T_2$ into holes corresponding to a cylinder based at an allowed word of length two. Only two possible values of the escape rate, approximate values are shown

    Hole $H=I_{ab}$ $\tilde{\mu}(H)\sim$ $a(z)$ $a(3)$ $\rho(H)\sim$
    $I_{01},I_{02},I_{10},I_{20}$ 0.1057 $\dfrac{2}{z+1}$ $\dfrac{1}{2}$ 0.1237
    $I_{11},I_{22}$ 0.1443 $\dfrac{2}{z+1}$ $\dfrac{1}{2}$ 0.1237
    $I_{12},I_{21}$ 0.1443 $\dfrac{2z+1}{z(z+1)}$ $\dfrac{7}{12}$ 0.1955
     | Show Table
    DownLoad: CSV

    Table 9.  Escape rate for $T_3$ into holes corresponding to a cylinder based at an allowed word of length two. Only four possible values of the escape rate, approximate values are shown

    Hole $H=I_{ab}$ $\tilde{\mu}(H)\sim$ $a(z)$ $a(3)$ $\rho(H)\sim$
    $I_{00},I_{22}$ 0.1056 $\dfrac{2}{z+1}$ $\dfrac{1}{2}$ 0.0810
    $I_{01},I_{12}$ 0.1708 $\dfrac{2}{z}$ $\dfrac{2}{3}$ 0.2693
    $I_{10},I_{21}$ 0.1056 $\dfrac{2z-1}{z^2}$ $\dfrac{5}{9}$ 0.1188
    $I_{11}$ 0.1708 $\dfrac{2z+1}{z(z+1)}$ $\dfrac{7}{12}$ 0.1528
    $I_{20}$ 0.0652 $\dfrac{2}{z+1}$ $\dfrac{1}{2}$ 0.0810
     | Show Table
    DownLoad: CSV
  • [1] R. L. Adler, Symbolic dynamics and Markov Partitions, Bulletin of American Mathematical Society, 35 (1998), 1-56.  doi: 10.1090/S0273-0979-98-00737-X.
    [2] V. S. Afraimovich and L. A. Bunimovich, Which hole is leaking the most: A topological approach to study open systems, Nonlinearity, 23 (2010), 643-656.  doi: 10.1088/0951-7715/23/3/012.
    [3] W. Bahsoun, C. Bose and G. Froyland (Editors), Ergodic Theory, Open Dynamics, and Coherent Structures, Springer-Verlag, New York, 2014. doi: 10.1007/978-1-4939-0419-8.
    [4] H. van den Bedem and N. Chernov, Expanding maps of an interval with holes, Ergodic Theory and Dynamical Systems, 22 (2002), 637-654.  doi: 10.1017/S0143385702000329.
    [5] H. BruinM. Demers and I. Melbourne, Existence and convergence properties of physical measures for certain dynamical systems with holes, Ergodic Theory and Dynamical Systems, 30 (2010), 687-728.  doi: 10.1017/S0143385709000200.
    [6] S. BundfussT. Krueger and S. Troubetzkoy, Topological and symbolic dynamics for hyperbolic systems with holes, Ergodic Theory and Dynamical Systems, 31 (2011), 1305-1323.  doi: 10.1017/S0143385710000556.
    [7] L. Bunimovich and A. Yurchenko, Where to place a hole to achieve a maximal escape rate, Israel Journal of Mathematics, 182 (2011), 229-252.  doi: 10.1007/s11856-011-0030-8.
    [8] N. Chernov and R. Markarian, Ergodic properties of Anosov maps with rectangular holes, Boletim Sociedade Brasileira Matematica, 28 (1997), 271-314.  doi: 10.1007/BF01233395.
    [9] M. Demers, Markov extensions and conditionally invariant measures for certain logistic maps with small holes, Ergodic Theory and Dynamical Systems, 25 (2005), 1139-1171.  doi: 10.1017/S0143385704000963.
    [10] M. Demers and L. S. Young, Escape rates and conditionally invariant measures, Nonlinearity, 19 (2006), 377-397.  doi: 10.1088/0951-7715/19/2/008.
    [11] M. DemersP. Wright and L. S. Young, Escape rates and physically relevant measures for billiards with small holes, Communications in Mathematical Physics, 294 (2010), 253-288.  doi: 10.1007/s00220-009-0941-y.
    [12] L. J. Guibas and A. M. Odlyzko, String overlaps, pattern matching, and non-transitive games, Journal of Combinatorial Theory, Series A, 30 (1981), 183-208.  doi: 10.1016/0097-3165(81)90005-4.
    [13] G. Keller and C. Liverani, Rare events, escape rates and quasistationarity: Some exact formulae, Journal of Statistical Physics, 135 (2009), 519-534.  doi: 10.1007/s10955-009-9747-8.
    [14] D. Lind and  B. MarcusAn Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995.  doi: 10.1017/CBO9780511626302.
    [15] G. Pianigiani and J. A. Yorke, Expanding maps on sets which are almost invariant: Decay and chaos, Transactions of AMS, 252 (1979), 351-366.  doi: 10.2307/1998093.
    [16] M. Pollicott and M. Yuri, Dynamical Systems and Ergodic Theory, London Mathematical Society Student Texts, 1998. doi: 10.1017/CBO9781139173049.
  • 加载中

Figures(8)

Tables(9)

SHARE

Article Metrics

HTML views(1610) PDF downloads(234) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return