
-
Previous Article
On a resonant and superlinear elliptic system
- DCDS Home
- This Issue
-
Next Article
On the maximal saddle order of $ p:-q $ resonant saddle
Product of expansive Markov maps with hole
Department of Mathematics, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India |
We consider product of expansive Markov maps on an interval with hole which is conjugate to a subshift of finite type. For certain class of maps, it is known that the escape rate into a given hole does not just depend on its size but also on its position in the state space. We illustrate this phenomenon for maps considered here. We compare the escape rate into a connected hole and a hole which is a union of holes with a certain property, but have same measure. This gives rise to some interesting combinatorial problems.
References:
[1] |
R. L. Adler,
Symbolic dynamics and Markov Partitions, Bulletin of American Mathematical Society, 35 (1998), 1-56.
doi: 10.1090/S0273-0979-98-00737-X. |
[2] |
V. S. Afraimovich and L. A. Bunimovich,
Which hole is leaking the most: A topological approach to study open systems, Nonlinearity, 23 (2010), 643-656.
doi: 10.1088/0951-7715/23/3/012. |
[3] |
W. Bahsoun, C. Bose and G. Froyland (Editors), Ergodic Theory, Open Dynamics, and Coherent Structures, Springer-Verlag, New York, 2014.
doi: 10.1007/978-1-4939-0419-8. |
[4] |
H. van den Bedem and N. Chernov,
Expanding maps of an interval with holes, Ergodic Theory and Dynamical Systems, 22 (2002), 637-654.
doi: 10.1017/S0143385702000329. |
[5] |
H. Bruin, M. Demers and I. Melbourne,
Existence and convergence properties of physical measures for certain dynamical systems with holes, Ergodic Theory and Dynamical Systems, 30 (2010), 687-728.
doi: 10.1017/S0143385709000200. |
[6] |
S. Bundfuss, T. Krueger and S. Troubetzkoy,
Topological and symbolic dynamics for hyperbolic systems with holes, Ergodic Theory and Dynamical Systems, 31 (2011), 1305-1323.
doi: 10.1017/S0143385710000556. |
[7] |
L. Bunimovich and A. Yurchenko,
Where to place a hole to achieve a maximal escape rate, Israel Journal of Mathematics, 182 (2011), 229-252.
doi: 10.1007/s11856-011-0030-8. |
[8] |
N. Chernov and R. Markarian,
Ergodic properties of Anosov maps with rectangular holes, Boletim Sociedade Brasileira Matematica, 28 (1997), 271-314.
doi: 10.1007/BF01233395. |
[9] |
M. Demers,
Markov extensions and conditionally invariant measures for certain logistic maps with small holes, Ergodic Theory and Dynamical Systems, 25 (2005), 1139-1171.
doi: 10.1017/S0143385704000963. |
[10] |
M. Demers and L. S. Young,
Escape rates and conditionally invariant measures, Nonlinearity, 19 (2006), 377-397.
doi: 10.1088/0951-7715/19/2/008. |
[11] |
M. Demers, P. Wright and L. S. Young,
Escape rates and physically relevant measures for billiards with small holes, Communications in Mathematical Physics, 294 (2010), 253-288.
doi: 10.1007/s00220-009-0941-y. |
[12] |
L. J. Guibas and A. M. Odlyzko,
String overlaps, pattern matching, and non-transitive games, Journal of Combinatorial Theory, Series A, 30 (1981), 183-208.
doi: 10.1016/0097-3165(81)90005-4. |
[13] |
G. Keller and C. Liverani,
Rare events, escape rates and quasistationarity: Some exact formulae, Journal of Statistical Physics, 135 (2009), 519-534.
doi: 10.1007/s10955-009-9747-8. |
[14] |
D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511626302.![]() ![]() |
[15] |
G. Pianigiani and J. A. Yorke,
Expanding maps on sets which are almost invariant: Decay and chaos, Transactions of AMS, 252 (1979), 351-366.
doi: 10.2307/1998093. |
[16] |
M. Pollicott and M. Yuri, Dynamical Systems and Ergodic Theory, London Mathematical Society Student Texts, 1998.
doi: 10.1017/CBO9781139173049. |
show all references
References:
[1] |
R. L. Adler,
Symbolic dynamics and Markov Partitions, Bulletin of American Mathematical Society, 35 (1998), 1-56.
doi: 10.1090/S0273-0979-98-00737-X. |
[2] |
V. S. Afraimovich and L. A. Bunimovich,
Which hole is leaking the most: A topological approach to study open systems, Nonlinearity, 23 (2010), 643-656.
doi: 10.1088/0951-7715/23/3/012. |
[3] |
W. Bahsoun, C. Bose and G. Froyland (Editors), Ergodic Theory, Open Dynamics, and Coherent Structures, Springer-Verlag, New York, 2014.
doi: 10.1007/978-1-4939-0419-8. |
[4] |
H. van den Bedem and N. Chernov,
Expanding maps of an interval with holes, Ergodic Theory and Dynamical Systems, 22 (2002), 637-654.
doi: 10.1017/S0143385702000329. |
[5] |
H. Bruin, M. Demers and I. Melbourne,
Existence and convergence properties of physical measures for certain dynamical systems with holes, Ergodic Theory and Dynamical Systems, 30 (2010), 687-728.
doi: 10.1017/S0143385709000200. |
[6] |
S. Bundfuss, T. Krueger and S. Troubetzkoy,
Topological and symbolic dynamics for hyperbolic systems with holes, Ergodic Theory and Dynamical Systems, 31 (2011), 1305-1323.
doi: 10.1017/S0143385710000556. |
[7] |
L. Bunimovich and A. Yurchenko,
Where to place a hole to achieve a maximal escape rate, Israel Journal of Mathematics, 182 (2011), 229-252.
doi: 10.1007/s11856-011-0030-8. |
[8] |
N. Chernov and R. Markarian,
Ergodic properties of Anosov maps with rectangular holes, Boletim Sociedade Brasileira Matematica, 28 (1997), 271-314.
doi: 10.1007/BF01233395. |
[9] |
M. Demers,
Markov extensions and conditionally invariant measures for certain logistic maps with small holes, Ergodic Theory and Dynamical Systems, 25 (2005), 1139-1171.
doi: 10.1017/S0143385704000963. |
[10] |
M. Demers and L. S. Young,
Escape rates and conditionally invariant measures, Nonlinearity, 19 (2006), 377-397.
doi: 10.1088/0951-7715/19/2/008. |
[11] |
M. Demers, P. Wright and L. S. Young,
Escape rates and physically relevant measures for billiards with small holes, Communications in Mathematical Physics, 294 (2010), 253-288.
doi: 10.1007/s00220-009-0941-y. |
[12] |
L. J. Guibas and A. M. Odlyzko,
String overlaps, pattern matching, and non-transitive games, Journal of Combinatorial Theory, Series A, 30 (1981), 183-208.
doi: 10.1016/0097-3165(81)90005-4. |
[13] |
G. Keller and C. Liverani,
Rare events, escape rates and quasistationarity: Some exact formulae, Journal of Statistical Physics, 135 (2009), 519-534.
doi: 10.1007/s10955-009-9747-8. |
[14] |
D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511626302.![]() ![]() |
[15] |
G. Pianigiani and J. A. Yorke,
Expanding maps on sets which are almost invariant: Decay and chaos, Transactions of AMS, 252 (1979), 351-366.
doi: 10.2307/1998093. |
[16] |
M. Pollicott and M. Yuri, Dynamical Systems and Ergodic Theory, London Mathematical Society Student Texts, 1998.
doi: 10.1017/CBO9781139173049. |








Corresponding words | |||
1 | 0.08 | ||
2 | 0.1 | ||
2 | 0.1 | ||
1 | 0.08 | ||
1 | 0.08 | ||
2 | 0.1 | ||
2 | 0.1 | ||
1 | 0.08 | ||
1 | 0.08 | ||
2 | 0.1 | ||
2 | 0.1 | ||
1 | 0.08 |
Corresponding words | |||
1 | 0.08 | ||
2 | 0.1 | ||
2 | 0.1 | ||
1 | 0.08 | ||
1 | 0.08 | ||
2 | 0.1 | ||
2 | 0.1 | ||
1 | 0.08 | ||
1 | 0.08 | ||
2 | 0.1 | ||
2 | 0.1 | ||
1 | 0.08 |
Corresponding words | |||
1 | 0.036 | ||
3 | 0.047 | ||
2 | 0.042 | ||
3 | 0.047 | ||
3 | 0.047 | ||
2 | 0.042 | ||
3 | 0.047 | ||
1 | 0.036 | ||
1 | 0.036 | ||
3 | 0.047 | ||
2 | 0.042 | ||
3 | 0.047 | ||
3 | 0.047 | ||
2 | 0.042 | ||
3 | 0.047 | ||
1 | 0.036 | ||
1 | 0.036 | ||
3 | 0.047 | ||
2 | 0.042 | ||
3 | 0.047 | ||
3 | 0.047 | ||
2 | 0.042 | ||
3 | 0.047 | ||
1 | 0.036 |
Corresponding words | |||
1 | 0.036 | ||
3 | 0.047 | ||
2 | 0.042 | ||
3 | 0.047 | ||
3 | 0.047 | ||
2 | 0.042 | ||
3 | 0.047 | ||
1 | 0.036 | ||
1 | 0.036 | ||
3 | 0.047 | ||
2 | 0.042 | ||
3 | 0.047 | ||
3 | 0.047 | ||
2 | 0.042 | ||
3 | 0.047 | ||
1 | 0.036 | ||
1 | 0.036 | ||
3 | 0.047 | ||
2 | 0.042 | ||
3 | 0.047 | ||
3 | 0.047 | ||
2 | 0.042 | ||
3 | 0.047 | ||
1 | 0.036 |
Corresponding words | |||
1 | 0.0028 | ||
4 | 0.00312 | ||
3 | 0.00309 | ||
2 | 0.00303 | ||
2 | 0.00301 | ||
4 | 0.00312 | ||
3 | 0.00309 | ||
2 | 0.00303 | ||
2 | 0.00301 |
Corresponding words | |||
1 | 0.0028 | ||
4 | 0.00312 | ||
3 | 0.00309 | ||
2 | 0.00303 | ||
2 | 0.00301 | ||
4 | 0.00312 | ||
3 | 0.00309 | ||
2 | 0.00303 | ||
2 | 0.00301 |
1 | 1 | 2 | 2 | 2 |
2 | 10 | 7 | 5 | 3 |
3 | 20 | 11 | 7 | 5 |
4 | 30 | 15 | 10 | 7 |
5 | 40 | 20 | 12 | 8 |
6 | 50 | 24 | 15 | 10 |
7 | 59 | 29 | 18 | 12 |
8 | 69 | 33 | 20 | 13 |
9 | 79 | 38 | 23 | 15 |
1 | 1 | 2 | 2 | 2 |
2 | 10 | 7 | 5 | 3 |
3 | 20 | 11 | 7 | 5 |
4 | 30 | 15 | 10 | 7 |
5 | 40 | 20 | 12 | 8 |
6 | 50 | 24 | 15 | 10 |
7 | 59 | 29 | 18 | 12 |
8 | 69 | 33 | 20 | 13 |
9 | 79 | 38 | 23 | 15 |
Holes |
|||
0.2 | 0.188 | 1 | |
0.124 | 0.153 | 2 | |
0.076 | 0.081 | 2 |
Holes |
|||
0.2 | 0.188 | 1 | |
0.124 | 0.153 | 2 | |
0.076 | 0.081 | 2 |
Holes |
|||
0.076 | 0.081 | 2 | |
0.076 | 0.057 | 1 | |
0.047 | 0.054 | 3 | |
0.029 | 0.031 | 3 | |
0.029 | 0.028 | 2 | |
0.018 | 0.019 | 3 | |
0.011 | 0.010 | 2 |
Holes |
|||
0.076 | 0.081 | 2 | |
0.076 | 0.057 | 1 | |
0.047 | 0.054 | 3 | |
0.029 | 0.031 | 3 | |
0.029 | 0.028 | 2 | |
0.018 | 0.019 | 3 | |
0.011 | 0.010 | 2 |
Holes |
|||
0.0279 | 0.0251 | 1 | |
0.0173 | 0.0176 | 2 | |
0.0279 | 0.0293 | 2 |
Holes |
|||
0.0279 | 0.0251 | 1 | |
0.0173 | 0.0176 | 2 | |
0.0279 | 0.0293 | 2 |
Hole |
||||
0.1057 | 0.1237 | |||
0.1443 | 0.1237 | |||
0.1443 | 0.1955 |
Hole |
||||
0.1057 | 0.1237 | |||
0.1443 | 0.1237 | |||
0.1443 | 0.1955 |
Hole |
||||
0.1056 | 0.0810 | |||
0.1708 | 0.2693 | |||
0.1056 | 0.1188 | |||
0.1708 | 0.1528 | |||
0.0652 | 0.0810 |
Hole |
||||
0.1056 | 0.0810 | |||
0.1708 | 0.2693 | |||
0.1056 | 0.1188 | |||
0.1708 | 0.1528 | |||
0.0652 | 0.0810 |
[1] |
Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020399 |
[2] |
Zsolt Saffer, Miklós Telek, Gábor Horváth. Analysis of Markov-modulated fluid polling systems with gated discipline. Journal of Industrial & Management Optimization, 2021, 17 (2) : 575-599. doi: 10.3934/jimo.2019124 |
[3] |
The Editors. The 2019 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2020, 16: 349-350. doi: 10.3934/jmd.2020013 |
[4] |
Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021004 |
[5] |
Xin Zhao, Tao Feng, Liang Wang, Zhipeng Qiu. Threshold dynamics and sensitivity analysis of a stochastic semi-Markov switched SIRS epidemic model with nonlinear incidence and vaccination. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021010 |
[6] |
Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106 |
[7] |
Xueli Bai, Fang Li. Global dynamics of competition models with nonsymmetric nonlocal dispersals when one diffusion rate is small. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3075-3092. doi: 10.3934/dcds.2020035 |
[8] |
Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129 |
[9] |
Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331 |
[10] |
Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021012 |
[11] |
Stefan Siegmund, Petr Stehlík. Time scale-induced asynchronous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1011-1029. doi: 10.3934/dcdsb.2020151 |
[12] |
Dorothee Knees, Chiara Zanini. Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 121-149. doi: 10.3934/dcdss.2020332 |
[13] |
Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020406 |
[14] |
Meenakshi Rana, Shruti Sharma. Combinatorics of some fifth and sixth order mock theta functions. Electronic Research Archive, 2021, 29 (1) : 1803-1818. doi: 10.3934/era.2020092 |
[15] |
Angelica Pachon, Federico Polito, Costantino Ricciuti. On discrete-time semi-Markov processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1499-1529. doi: 10.3934/dcdsb.2020170 |
[16] |
Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304 |
[17] |
Lei Yang, Lianzhang Bao. Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1083-1109. doi: 10.3934/dcdsb.2020154 |
[18] |
Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217 |
[19] |
Claudio Bonanno, Marco Lenci. Pomeau-Manneville maps are global-local mixing. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1051-1069. doi: 10.3934/dcds.2020309 |
[20] |
Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]