We prove existence of solutions for a class of nonhomogeneous elliptic system with asymmetric nonlinearities that are resonant at −∞ and superlinear at +∞. The proof is based on topological degree arguments. A priori bounds for the solutions are obtained by adapting the method of BrezisTurner.
| Citation: |
| [1] |
H. Brezis and R. Turner, On a class of superlinear elliptic problems, Comm. Partial Differential Equations, 2 (1977), 601-614.
doi: 10.1080/03605307708820041.
|
| [2] |
K. C. Chang, An extension of the Hess-Kato theorem to elliptic systems and its applications to multiple solutions problems,, Acta Math. Sin. (Eng. Ser.), 15 (1999), 439-454.
doi: 10.1007/s10114-999-0078-0.
|
| [3] |
D. G. Costa and C. A. Magalhães, A variational approach to subquadratic perturbations of elliptic systems,, J. Differential Equations, 111 (1994), 103-122.
doi: 10.1006/jdeq.1994.1077.
|
| [4] |
M. Cuesta and C. De Coster, Superlinear critical resonant problems with small forcing term, Cal. Var. Partial Differential Equations, 54 (2015), 349-363.
doi: 10.1007/s00526-014-0788-8.
|
| [5] |
M. Cuesta and C. De Coster, A resonant-superlinear elliptic problem revisited,, Adv. Nonlinear Stud., 13 (2013), 97-114.
doi: 10.1515/ans-2013-0106.
|
| [6] |
M. Cuesta, D. G. de Figueiredo and P. N. Srikanth, On a resonant superlinear elliptic problem, Calc. Var. Partial Differential Equations, 17 (2003), 221-233.
|
| [7] |
D. G. de Figueiredo, Positive solutions of semilinear elliptic problems, Lecture Notes in Math., 957 (1982), 34-87.
|
| [8] |
D. G. de Figueiredo and J. P. Gossez, Strict monotonicity of eigenvalues and unique continuation,, Comm. Partial Differential Equations, 17 (1992), 339-346.
doi: 10.1080/03605309208820844.
|
| [9] |
F. O. de Paiva and W. Rosa, Neumann problems with resonance in the first eigenvalue,, Math. Nachr., 290 (2017), 2198-2206.
doi: 10.1002/mana.201600139.
|
| [10] |
M. F. Furtado and F. O. de Paiva, Multiplicity of solutions for resonant elliptic systems,, J. Math. Anal. Appl., 319 (2006), 435-449.
doi: 10.1016/j.jmaa.2005.06.038.
|
| [11] |
R. Kannan and R. Ortega, Landesman-Lazer conditions for problems with ``one-side unbounded" nonlinearities,, Nonlinear. Anal., 9 (1985), 1313-1317.
doi: 10.1016/0362-546X(85)90090-2.
|
| [12] |
R. Kannan and R. Ortega, Superlinear elliptic boundary value problems,, Czechoslovak Math. J., 37 (1987), 386-399.
|
| [13] |
J. R. Ward, Perturbations with some superlinear growth for a class of second order elliptic boundary value problems, Nonlinear Anal., 6 (1982), 367-374.
doi: 10.1016/0362-546X(82)90022-0.
|