October  2019, 39(10): 5799-5823. doi: 10.3934/dcds.2019255

Stability of non-monotone and backward waves for delay non-local reaction-diffusion equations

1. 

Instituto de Física, Facultad de Física, P. Universidad Católica de Chile, Casilla 306, Santiago 22, Chile

2. 

Departamento de Matemática y Física Aplicadas, Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile

Received  September 2018 Revised  April 2019 Published  July 2019

This paper deals with the stability of semi-wavefronts to the following delay non-local monostable equation: $\dot{v}(t,x) = \Delta v(t,x) - v(t,x) + \int_{\mathbb{R}^d}K(y)g(v(t-h,x-y))dy, x \in \mathbb{R}^d,\ t >0;$ where $h>0$ and $d\in\mathbb{Z}_+$. We give two general results for $d\geq1$: on the global stability of semi-wavefronts in $L^p$-spaces with unbounded weights and the local stability of planar wavefronts in $L^p$-spaces with bounded weights. We also give a global stability result for $d = 1$ which yields to the global stability in Sobolev spaces with bounded weights. Here $g$ is not assumed to be monotone and the kernel $K$ is not assumed to be symmetric, therefore non-monotone semi-wavefronts and backward semi-wavefronts appear for which we show their stability. In particular, the global stability of critical wavefronts is stated.

Citation: Abraham Solar. Stability of non-monotone and backward waves for delay non-local reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5799-5823. doi: 10.3934/dcds.2019255
References:
[1]

M. AguerreaC. Gomez and S. Trofimchuk, On uniqueness of semi-wavefronts, Math. Ann., 354 (2012), 73-109. doi: 10.1007/s00208-011-0722-8. Google Scholar

[2]

M. Bani-Yaghoub, The traveling wavefront for a nonlocal delayed reaction-diffusion equation, J. Appl. Math. Comput., 53 (2017), 77-94. doi: 10.1007/s12190-015-0958-7. Google Scholar

[3]

R. Benguria and A. Solar, An estimation of level set for a non-local KPP equation with delay, Nonlinearity, 32 (2019), 777-799. doi: 10.1088/1361-6544/aaedd7. Google Scholar

[4]

R. Benguria and A. Solar, An iterative estimation for disturbances of semi-wavefronts to the delayed Fisher-KPP equation, Proc. Amer. Math. Soc., 147 (2019), 2495-2501. Google Scholar

[5]

X. Chen, Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolutions equations, Advances in Differential Equations, 2 (1997), 125-160. Google Scholar

[6]

I.-L. ChernM. MeiX. Yang and Q. Zhang, Stability of non-monotone critical traveling waves for reaction-diffusion equation with time-delay, J. Diff. Eqns, 259 (2015), 1503-1541. doi: 10.1016/j.jde.2015.03.003. Google Scholar

[7]

U. Ebert and W. van Saarloos, Front propagation into unstable states: Universal algebraic convergence towards uniformly translating pulled fronts, Phys. D, 146 (2000), 1-99. doi: 10.1016/S0167-2789(00)00068-3. Google Scholar

[8]

A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs (N.J., USA), 1964. Google Scholar

[9]

T. Gallay, Local stability of critical fronts in nonlinear parabolic partial differential equations, Nonlinearity, 7 (1994), 741-764. Google Scholar

[10]

A. Gomez and S. Trofimchuk, Global continuation of monotone wavefronts, J. Lond. Math. Soc., 89 (2014), 47-68. doi: 10.1112/jlms/jdt050. Google Scholar

[11]

C. GomezH. Prado and S. Trofimchuk, Separation dichotomy and wavefronts for a nonlinear convolution equation, J. Math. Anal. Appl., 420 (2014), 1-19. doi: 10.1016/j.jmaa.2014.05.064. Google Scholar

[12]

S. A. GourleyJ. So and J. Wu, Non-locality of reaction-diffusion equations induced by delay: Biological modeling and nonlinear dynamics, J. Math. Sci., 124 (2004), 5119-5153. Google Scholar

[13] A. Halanay, Differential Equations: Stability, Oscillations, Time Lags, Academic Press, New York (N.Y., USA), 1966. Google Scholar
[14]

S.-B. Hsu and X.-Q. Zhao, Spreading speeds and traveling waves for nonmonotone integrodifference equations, SIAM J. Math. Anal., 40 (2008), 776-789. doi: 10.1137/070703016. Google Scholar

[15]

R. HuangM. Mei and Y. Wang, Planar traveling waves for nonlocal dispersion equation with monostable nonlinearity, Discret Contin. Dyn. Syst., 32 (2012), 3621-3649. doi: 10.3934/dcds.2012.32.3621. Google Scholar

[16]

R. HuangM. MeiK. Zhang and Q. Zhang, Asymptotic stability of non-monotone traveling waves for time-delayed nonlocal dispersion equations, Discrete Contin. Dyn. Syst., 36 (2016), 1331-1353. doi: 10.3934/dcds.2016.36.1331. Google Scholar

[17]

K. Kirchgassner, On the nonlinear dynamics of travelling fronts, J. Diff. Eqs., 96 (1992), 256-278. doi: 10.1016/0022-0396(92)90153-E. Google Scholar

[18]

A. KolmogorovI. Petrovskii and N. Piskunov, Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, (French) [Study of a Diffusion Equation That Is Related to the Growth of a Quality of Matter and Its Application to a Biological Problem], Moscow Uni. Bull. Math., 1 (1937), 1-25. Google Scholar

[19]

X. Liang and X.-Q. Zhao, Spreading speeds and traveling waves for abstract monostable evolution systems, J. Funct. Anal., 259 (2010), 857-903. doi: 10.1016/j.jfa.2010.04.018. Google Scholar

[20]

C.-K. LinC.-T. LinY. Lin and M. Mei, Exponential stability of nonmonotone traveling waves for Nicholson's blowflies equation, SIAM J. Math. Anal., 46 (2014), 1053-1084. doi: 10.1137/120904391. Google Scholar

[21]

G. Lv and M. Wang, Nonlinear stability of travelling wave fronts for delayed reaction diffusion equations, Nonlinearity, 23 (2010), 845-873. doi: 10.1088/0951-7715/23/4/005. Google Scholar

[22]

S. Ma and J. Wu, Existence, uniqueness and asymptotic stability of traveling wavefronts in a non-local delayed diffusion equation, J. Dyn. Diff. Eqns., 19 (2007), 391-436. doi: 10.1007/s10884-006-9065-7. Google Scholar

[23]

M. MeiCh. Ou and X.-Q. Zhao, Global stability of monostable traveling waves for nonlocal time-delayed reaction-diffusion equations, SIAM J. Math. Anal., 42 (2010), 2762-2790. doi: 10.1137/090776342. Google Scholar

[24]

M. MeiK. Zhang and Q. Zhang, Global stability of critical traveling waves with oscillations for time-delayed reaction-diffusion equation, Int. J. Numer. Anal. Model., 16 (2019), 375-397. Google Scholar

[25]

M. Protter and H. Weinberger, Maximum Principles in Differential Equations, Prentice Hall, Englewood Cliffs (N.J., USA), 1967. Google Scholar

[26]

D. Sattinger, On the stability of waves of nonlinear parabolic systems, Adv. Math., 22 (1976), 312-355. doi: 10.1016/0001-8708(76)90098-0. Google Scholar

[27]

K. Schaaf, Asymptotic behavior and traveling wave solutions for parabolic functional differential equations, Trans. Am. Math. Soc., 302 (1987), 587-615. doi: 10.2307/2000859. Google Scholar

[28]

H. Smith, Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems, AMS, Providence (R.I. USA), 1995. Google Scholar

[29]

J. W.-H. SoJ. Wu and X. Zou, A reaction-diffusion model for a single species with age structure I. Travelling wavefronts on unbounded domains, Proc. R. Soc. A, 457 (2001), 1841-1853. doi: 10.1098/rspa.2001.0789. Google Scholar

[30]

A. Solar, Stability of semi-wavefronts for delayed reaction-diffusion equations, preprint, arXiv: 1704.03011.Google Scholar

[31]

A. Solar and S. Trofimchuk, Speed selection and stability of wavefronts for delayed monostable reaction-diffusion equations, J. Dyn. Diff. Eqns., 28 (2016), 1265-1292. doi: 10.1007/s10884-015-9482-6. Google Scholar

[32]

A. Stokes, On two types of moving front in quasilinear diffusion, Math.Biosciences, 31 (1976), 307-315. doi: 10.1016/0025-5564(76)90087-0. Google Scholar

[33]

H. Thieme and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models, J.Diff. Eqns., 195 (2003), 430-470. doi: 10.1016/S0022-0396(03)00175-X. Google Scholar

[34]

E. TrofimchukP. Alvarado and S. Trofimchuk, On the geometry of wave solutions of a delayed reaction-diffusion equation, J. Diff. Eqns, 246 (2009), 1422-1444. doi: 10.1016/j.jde.2008.10.023. Google Scholar

[35]

E. TrofimchukM. Pinto and S. Trofimchuk, Monotone waves for non-monotone and non-local monostable reaction-diffusion equations, J. Diff. Eqns, 261 (2016), 1203-1236. doi: 10.1016/j.jde.2016.03.039. Google Scholar

[36]

K. Uchiyama, The behavior of solutions of some nonlinear diffusion equations for large time, J. Math. Kyoto Univ., 18 (1978), 453-508. doi: 10.1215/kjm/1250522506. Google Scholar

[37]

Z. WangW. Li and S. Ruan, Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay, J. Diff. Eqns., 238 (2007), 153-200. doi: 10.1016/j.jde.2007.03.025. Google Scholar

[38]

Z. WangW. Li and S. Ruan, Travelling fronts in monostable equations with nonlocal delayed effects, J. Dyn. Differ. Equ., 20 (2008), 573-607. doi: 10.1007/s10884-008-9103-8. Google Scholar

[39]

H. Weinberger, Long-time behavior of a class of biological models, SIAM J. Math. Anal., 13 (1982), 353-396. doi: 10.1137/0513028. Google Scholar

[40]

S.-L. WuW.-T. Li and S.-Y. Liu, Oscillatory waves in reaction-diffusion equations with nonlocal delay and crossing-monostability, Non. Lin. Anal.: Real World App., 10 (2009), 3141-3151. doi: 10.1016/j.nonrwa.2008.10.012. Google Scholar

[41]

T. Xu, S. Ji, M. Mei and J. Yin, Theoretical and numerical studies on global stability of traveling waves with oscillations for time-delayed nonlocal dispersion equations, preprint, arXiv: 1810.07484.Google Scholar

[42]

T. Yi and X. Zou, Asymptotic behavior, spreading speeds, and traveling waves of nonmonotone dynamical systems, SIAM J. Math.Anal., 47 (2015), 3005-3034. doi: 10.1137/14095412X. Google Scholar

[43]

T. Yi and X. Zou, Map dynamics versus dynamics of associated delay reaction-diffusion equations with a Neumann condition, Proc. R. Soc. A, 466 (2010), 2955-2973. doi: 10.1098/rspa.2009.0650. Google Scholar

[44]

T. YiY. Chen and J. Wu, Unimodal dynamical systems: Comparison principles, spreading speeds and travelling waves, J. Diff. Eqns, 254 (2013), 3538-3572. doi: 10.1016/j.jde.2013.01.031. Google Scholar

show all references

References:
[1]

M. AguerreaC. Gomez and S. Trofimchuk, On uniqueness of semi-wavefronts, Math. Ann., 354 (2012), 73-109. doi: 10.1007/s00208-011-0722-8. Google Scholar

[2]

M. Bani-Yaghoub, The traveling wavefront for a nonlocal delayed reaction-diffusion equation, J. Appl. Math. Comput., 53 (2017), 77-94. doi: 10.1007/s12190-015-0958-7. Google Scholar

[3]

R. Benguria and A. Solar, An estimation of level set for a non-local KPP equation with delay, Nonlinearity, 32 (2019), 777-799. doi: 10.1088/1361-6544/aaedd7. Google Scholar

[4]

R. Benguria and A. Solar, An iterative estimation for disturbances of semi-wavefronts to the delayed Fisher-KPP equation, Proc. Amer. Math. Soc., 147 (2019), 2495-2501. Google Scholar

[5]

X. Chen, Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolutions equations, Advances in Differential Equations, 2 (1997), 125-160. Google Scholar

[6]

I.-L. ChernM. MeiX. Yang and Q. Zhang, Stability of non-monotone critical traveling waves for reaction-diffusion equation with time-delay, J. Diff. Eqns, 259 (2015), 1503-1541. doi: 10.1016/j.jde.2015.03.003. Google Scholar

[7]

U. Ebert and W. van Saarloos, Front propagation into unstable states: Universal algebraic convergence towards uniformly translating pulled fronts, Phys. D, 146 (2000), 1-99. doi: 10.1016/S0167-2789(00)00068-3. Google Scholar

[8]

A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs (N.J., USA), 1964. Google Scholar

[9]

T. Gallay, Local stability of critical fronts in nonlinear parabolic partial differential equations, Nonlinearity, 7 (1994), 741-764. Google Scholar

[10]

A. Gomez and S. Trofimchuk, Global continuation of monotone wavefronts, J. Lond. Math. Soc., 89 (2014), 47-68. doi: 10.1112/jlms/jdt050. Google Scholar

[11]

C. GomezH. Prado and S. Trofimchuk, Separation dichotomy and wavefronts for a nonlinear convolution equation, J. Math. Anal. Appl., 420 (2014), 1-19. doi: 10.1016/j.jmaa.2014.05.064. Google Scholar

[12]

S. A. GourleyJ. So and J. Wu, Non-locality of reaction-diffusion equations induced by delay: Biological modeling and nonlinear dynamics, J. Math. Sci., 124 (2004), 5119-5153. Google Scholar

[13] A. Halanay, Differential Equations: Stability, Oscillations, Time Lags, Academic Press, New York (N.Y., USA), 1966. Google Scholar
[14]

S.-B. Hsu and X.-Q. Zhao, Spreading speeds and traveling waves for nonmonotone integrodifference equations, SIAM J. Math. Anal., 40 (2008), 776-789. doi: 10.1137/070703016. Google Scholar

[15]

R. HuangM. Mei and Y. Wang, Planar traveling waves for nonlocal dispersion equation with monostable nonlinearity, Discret Contin. Dyn. Syst., 32 (2012), 3621-3649. doi: 10.3934/dcds.2012.32.3621. Google Scholar

[16]

R. HuangM. MeiK. Zhang and Q. Zhang, Asymptotic stability of non-monotone traveling waves for time-delayed nonlocal dispersion equations, Discrete Contin. Dyn. Syst., 36 (2016), 1331-1353. doi: 10.3934/dcds.2016.36.1331. Google Scholar

[17]

K. Kirchgassner, On the nonlinear dynamics of travelling fronts, J. Diff. Eqs., 96 (1992), 256-278. doi: 10.1016/0022-0396(92)90153-E. Google Scholar

[18]

A. KolmogorovI. Petrovskii and N. Piskunov, Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, (French) [Study of a Diffusion Equation That Is Related to the Growth of a Quality of Matter and Its Application to a Biological Problem], Moscow Uni. Bull. Math., 1 (1937), 1-25. Google Scholar

[19]

X. Liang and X.-Q. Zhao, Spreading speeds and traveling waves for abstract monostable evolution systems, J. Funct. Anal., 259 (2010), 857-903. doi: 10.1016/j.jfa.2010.04.018. Google Scholar

[20]

C.-K. LinC.-T. LinY. Lin and M. Mei, Exponential stability of nonmonotone traveling waves for Nicholson's blowflies equation, SIAM J. Math. Anal., 46 (2014), 1053-1084. doi: 10.1137/120904391. Google Scholar

[21]

G. Lv and M. Wang, Nonlinear stability of travelling wave fronts for delayed reaction diffusion equations, Nonlinearity, 23 (2010), 845-873. doi: 10.1088/0951-7715/23/4/005. Google Scholar

[22]

S. Ma and J. Wu, Existence, uniqueness and asymptotic stability of traveling wavefronts in a non-local delayed diffusion equation, J. Dyn. Diff. Eqns., 19 (2007), 391-436. doi: 10.1007/s10884-006-9065-7. Google Scholar

[23]

M. MeiCh. Ou and X.-Q. Zhao, Global stability of monostable traveling waves for nonlocal time-delayed reaction-diffusion equations, SIAM J. Math. Anal., 42 (2010), 2762-2790. doi: 10.1137/090776342. Google Scholar

[24]

M. MeiK. Zhang and Q. Zhang, Global stability of critical traveling waves with oscillations for time-delayed reaction-diffusion equation, Int. J. Numer. Anal. Model., 16 (2019), 375-397. Google Scholar

[25]

M. Protter and H. Weinberger, Maximum Principles in Differential Equations, Prentice Hall, Englewood Cliffs (N.J., USA), 1967. Google Scholar

[26]

D. Sattinger, On the stability of waves of nonlinear parabolic systems, Adv. Math., 22 (1976), 312-355. doi: 10.1016/0001-8708(76)90098-0. Google Scholar

[27]

K. Schaaf, Asymptotic behavior and traveling wave solutions for parabolic functional differential equations, Trans. Am. Math. Soc., 302 (1987), 587-615. doi: 10.2307/2000859. Google Scholar

[28]

H. Smith, Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems, AMS, Providence (R.I. USA), 1995. Google Scholar

[29]

J. W.-H. SoJ. Wu and X. Zou, A reaction-diffusion model for a single species with age structure I. Travelling wavefronts on unbounded domains, Proc. R. Soc. A, 457 (2001), 1841-1853. doi: 10.1098/rspa.2001.0789. Google Scholar

[30]

A. Solar, Stability of semi-wavefronts for delayed reaction-diffusion equations, preprint, arXiv: 1704.03011.Google Scholar

[31]

A. Solar and S. Trofimchuk, Speed selection and stability of wavefronts for delayed monostable reaction-diffusion equations, J. Dyn. Diff. Eqns., 28 (2016), 1265-1292. doi: 10.1007/s10884-015-9482-6. Google Scholar

[32]

A. Stokes, On two types of moving front in quasilinear diffusion, Math.Biosciences, 31 (1976), 307-315. doi: 10.1016/0025-5564(76)90087-0. Google Scholar

[33]

H. Thieme and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models, J.Diff. Eqns., 195 (2003), 430-470. doi: 10.1016/S0022-0396(03)00175-X. Google Scholar

[34]

E. TrofimchukP. Alvarado and S. Trofimchuk, On the geometry of wave solutions of a delayed reaction-diffusion equation, J. Diff. Eqns, 246 (2009), 1422-1444. doi: 10.1016/j.jde.2008.10.023. Google Scholar

[35]

E. TrofimchukM. Pinto and S. Trofimchuk, Monotone waves for non-monotone and non-local monostable reaction-diffusion equations, J. Diff. Eqns, 261 (2016), 1203-1236. doi: 10.1016/j.jde.2016.03.039. Google Scholar

[36]

K. Uchiyama, The behavior of solutions of some nonlinear diffusion equations for large time, J. Math. Kyoto Univ., 18 (1978), 453-508. doi: 10.1215/kjm/1250522506. Google Scholar

[37]

Z. WangW. Li and S. Ruan, Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay, J. Diff. Eqns., 238 (2007), 153-200. doi: 10.1016/j.jde.2007.03.025. Google Scholar

[38]

Z. WangW. Li and S. Ruan, Travelling fronts in monostable equations with nonlocal delayed effects, J. Dyn. Differ. Equ., 20 (2008), 573-607. doi: 10.1007/s10884-008-9103-8. Google Scholar

[39]

H. Weinberger, Long-time behavior of a class of biological models, SIAM J. Math. Anal., 13 (1982), 353-396. doi: 10.1137/0513028. Google Scholar

[40]

S.-L. WuW.-T. Li and S.-Y. Liu, Oscillatory waves in reaction-diffusion equations with nonlocal delay and crossing-monostability, Non. Lin. Anal.: Real World App., 10 (2009), 3141-3151. doi: 10.1016/j.nonrwa.2008.10.012. Google Scholar

[41]

T. Xu, S. Ji, M. Mei and J. Yin, Theoretical and numerical studies on global stability of traveling waves with oscillations for time-delayed nonlocal dispersion equations, preprint, arXiv: 1810.07484.Google Scholar

[42]

T. Yi and X. Zou, Asymptotic behavior, spreading speeds, and traveling waves of nonmonotone dynamical systems, SIAM J. Math.Anal., 47 (2015), 3005-3034. doi: 10.1137/14095412X. Google Scholar

[43]

T. Yi and X. Zou, Map dynamics versus dynamics of associated delay reaction-diffusion equations with a Neumann condition, Proc. R. Soc. A, 466 (2010), 2955-2973. doi: 10.1098/rspa.2009.0650. Google Scholar

[44]

T. YiY. Chen and J. Wu, Unimodal dynamical systems: Comparison principles, spreading speeds and travelling waves, J. Diff. Eqns, 254 (2013), 3538-3572. doi: 10.1016/j.jde.2013.01.031. Google Scholar

[1]

Zhao-Xing Yang, Guo-Bao Zhang, Ge Tian, Zhaosheng Feng. Stability of non-monotone non-critical traveling waves in discrete reaction-diffusion equations with time delay. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 581-603. doi: 10.3934/dcdss.2017029

[2]

Shi-Liang Wu, Wan-Tong Li, San-Yang Liu. Exponential stability of traveling fronts in monostable reaction-advection-diffusion equations with non-local delay. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 347-366. doi: 10.3934/dcdsb.2012.17.347

[3]

Rui Huang, Ming Mei, Kaijun Zhang, Qifeng Zhang. Asymptotic stability of non-monotone traveling waves for time-delayed nonlocal dispersion equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1331-1353. doi: 10.3934/dcds.2016.36.1331

[4]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[5]

Hirotada Honda. Global-in-time solution and stability of Kuramoto-Sakaguchi equation under non-local Coupling. Networks & Heterogeneous Media, 2017, 12 (1) : 25-57. doi: 10.3934/nhm.2017002

[6]

Ming Mei. Stability of traveling wavefronts for time-delayed reaction-diffusion equations. Conference Publications, 2009, 2009 (Special) : 526-535. doi: 10.3934/proc.2009.2009.526

[7]

Hongjie Dong, Doyoon Kim. Schauder estimates for a class of non-local elliptic equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2319-2347. doi: 10.3934/dcds.2013.33.2319

[8]

A. V. Bobylev, Vladimir Dorodnitsyn. Symmetries of evolution equations with non-local operators and applications to the Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 35-57. doi: 10.3934/dcds.2009.24.35

[9]

Yuanhong Wei, Xifeng Su. On a class of non-local elliptic equations with asymptotically linear term. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 6287-6304. doi: 10.3934/dcds.2018154

[10]

Sergiu Aizicovici, Simeon Reich. Anti-periodic solutions to a class of non-monotone evolution equations. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 35-42. doi: 10.3934/dcds.1999.5.35

[11]

Eugen Stumpf. Local stability analysis of differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3445-3461. doi: 10.3934/dcds.2016.36.3445

[12]

Tao Wang. Global dynamics of a non-local delayed differential equation in the half plane. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2475-2492. doi: 10.3934/cpaa.2014.13.2475

[13]

Antônio Luiz Pereira, Severino Horácio da Silva. Continuity of global attractors for a class of non local evolution equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 1073-1100. doi: 10.3934/dcds.2010.26.1073

[14]

Raffaella Servadei, Enrico Valdinoci. A Brezis-Nirenberg result for non-local critical equations in low dimension. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2445-2464. doi: 10.3934/cpaa.2013.12.2445

[15]

Kyudong Choi. Persistence of Hölder continuity for non-local integro-differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1741-1771. doi: 10.3934/dcds.2013.33.1741

[16]

Imran H. Biswas, Indranil Chowdhury. On the differentiability of the solutions of non-local Isaacs equations involving $\frac{1}{2}$-Laplacian. Communications on Pure & Applied Analysis, 2016, 15 (3) : 907-927. doi: 10.3934/cpaa.2016.15.907

[17]

Huxiao Luo, Xianhua Tang, Zu Gao. Sign-changing solutions for non-local elliptic equations with asymptotically linear term. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1147-1159. doi: 10.3934/cpaa.2018055

[18]

Qiyu Jin, Ion Grama, Quansheng Liu. Convergence theorems for the Non-Local Means filter. Inverse Problems & Imaging, 2018, 12 (4) : 853-881. doi: 10.3934/ipi.2018036

[19]

Gabriel Peyré, Sébastien Bougleux, Laurent Cohen. Non-local regularization of inverse problems. Inverse Problems & Imaging, 2011, 5 (2) : 511-530. doi: 10.3934/ipi.2011.5.511

[20]

Olivier Bonnefon, Jérôme Coville, Guillaume Legendre. Concentration phenomenon in some non-local equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 763-781. doi: 10.3934/dcdsb.2017037

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (48)
  • HTML views (98)
  • Cited by (0)

Other articles
by authors

[Back to Top]