-
Previous Article
Sign-changing solutions for some nonhomogeneous nonlocal critical elliptic problems
- DCDS Home
- This Issue
-
Next Article
Variational proof of the existence of brake orbits in the planar 2-center problem
Stability of non-monotone and backward waves for delay non-local reaction-diffusion equations
1. | Instituto de Física, Facultad de Física, P. Universidad Católica de Chile, Casilla 306, Santiago 22, Chile |
2. | Departamento de Matemática y Física Aplicadas, Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile |
This paper deals with the stability of semi-wavefronts to the following delay non-local monostable equation: $\dot{v}(t,x) = \Delta v(t,x) - v(t,x) + \int_{\mathbb{R}^d}K(y)g(v(t-h,x-y))dy, x \in \mathbb{R}^d,\ t >0;$ where $h>0$ and $d\in\mathbb{Z}_+$. We give two general results for $d\geq1$: on the global stability of semi-wavefronts in $L^p$-spaces with unbounded weights and the local stability of planar wavefronts in $L^p$-spaces with bounded weights. We also give a global stability result for $d = 1$ which yields to the global stability in Sobolev spaces with bounded weights. Here $g$ is not assumed to be monotone and the kernel $K$ is not assumed to be symmetric, therefore non-monotone semi-wavefronts and backward semi-wavefronts appear for which we show their stability. In particular, the global stability of critical wavefronts is stated.
References:
[1] |
M. Aguerrea, C. Gomez and S. Trofimchuk,
On uniqueness of semi-wavefronts, Math. Ann., 354 (2012), 73-109.
doi: 10.1007/s00208-011-0722-8. |
[2] |
M. Bani-Yaghoub,
The traveling wavefront for a nonlocal delayed reaction-diffusion equation, J. Appl. Math. Comput., 53 (2017), 77-94.
doi: 10.1007/s12190-015-0958-7. |
[3] |
R. Benguria and A. Solar,
An estimation of level set for a non-local KPP equation with delay, Nonlinearity, 32 (2019), 777-799.
doi: 10.1088/1361-6544/aaedd7. |
[4] |
R. Benguria and A. Solar, An iterative estimation for disturbances of semi-wavefronts to the delayed Fisher-KPP equation, Proc. Amer. Math. Soc., 147 (2019), 2495-2501. |
[5] |
X. Chen,
Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolutions equations, Advances in Differential Equations, 2 (1997), 125-160.
|
[6] |
I.-L. Chern, M. Mei, X. Yang and Q. Zhang,
Stability of non-monotone critical traveling waves for reaction-diffusion equation with time-delay, J. Diff. Eqns, 259 (2015), 1503-1541.
doi: 10.1016/j.jde.2015.03.003. |
[7] |
U. Ebert and W. van Saarloos,
Front propagation into unstable states: Universal algebraic convergence towards uniformly translating pulled fronts, Phys. D, 146 (2000), 1-99.
doi: 10.1016/S0167-2789(00)00068-3. |
[8] |
A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs (N.J., USA), 1964. |
[9] |
T. Gallay,
Local stability of critical fronts in nonlinear parabolic partial differential equations, Nonlinearity, 7 (1994), 741-764.
|
[10] |
A. Gomez and S. Trofimchuk,
Global continuation of monotone wavefronts, J. Lond. Math. Soc., 89 (2014), 47-68.
doi: 10.1112/jlms/jdt050. |
[11] |
C. Gomez, H. Prado and S. Trofimchuk,
Separation dichotomy and wavefronts for a nonlinear convolution equation, J. Math. Anal. Appl., 420 (2014), 1-19.
doi: 10.1016/j.jmaa.2014.05.064. |
[12] |
S. A. Gourley, J. So and J. Wu,
Non-locality of reaction-diffusion equations induced by delay: Biological modeling and nonlinear dynamics, J. Math. Sci., 124 (2004), 5119-5153.
|
[13] |
A. Halanay, Differential Equations: Stability, Oscillations, Time Lags, Academic Press, New York (N.Y., USA), 1966.
![]() ![]() |
[14] |
S.-B. Hsu and X.-Q. Zhao,
Spreading speeds and traveling waves for nonmonotone integrodifference equations, SIAM J. Math. Anal., 40 (2008), 776-789.
doi: 10.1137/070703016. |
[15] |
R. Huang, M. Mei and Y. Wang,
Planar traveling waves for nonlocal dispersion equation with monostable nonlinearity, Discret Contin. Dyn. Syst., 32 (2012), 3621-3649.
doi: 10.3934/dcds.2012.32.3621. |
[16] |
R. Huang, M. Mei, K. Zhang and Q. Zhang,
Asymptotic stability of non-monotone traveling waves for time-delayed nonlocal dispersion equations, Discrete Contin. Dyn. Syst., 36 (2016), 1331-1353.
doi: 10.3934/dcds.2016.36.1331. |
[17] |
K. Kirchgassner,
On the nonlinear dynamics of travelling fronts, J. Diff. Eqs., 96 (1992), 256-278.
doi: 10.1016/0022-0396(92)90153-E. |
[18] |
A. Kolmogorov, I. Petrovskii and N. Piskunov,
Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, (French) [Study of a Diffusion Equation That Is Related to the Growth of a Quality of Matter and Its Application to a Biological Problem], Moscow Uni. Bull. Math., 1 (1937), 1-25.
|
[19] |
X. Liang and X.-Q. Zhao,
Spreading speeds and traveling waves for abstract monostable evolution systems, J. Funct. Anal., 259 (2010), 857-903.
doi: 10.1016/j.jfa.2010.04.018. |
[20] |
C.-K. Lin, C.-T. Lin, Y. Lin and M. Mei,
Exponential stability of nonmonotone traveling waves for Nicholson's blowflies equation, SIAM J. Math. Anal., 46 (2014), 1053-1084.
doi: 10.1137/120904391. |
[21] |
G. Lv and M. Wang, Nonlinear stability of travelling wave fronts for delayed reaction diffusion equations, Nonlinearity, 23 (2010), 845-873.
doi: 10.1088/0951-7715/23/4/005. |
[22] |
S. Ma and J. Wu,
Existence, uniqueness and asymptotic stability of traveling wavefronts in a non-local delayed diffusion equation, J. Dyn. Diff. Eqns., 19 (2007), 391-436.
doi: 10.1007/s10884-006-9065-7. |
[23] |
M. Mei, Ch. Ou and X.-Q. Zhao,
Global stability of monostable traveling waves for nonlocal time-delayed reaction-diffusion equations, SIAM J. Math. Anal., 42 (2010), 2762-2790.
doi: 10.1137/090776342. |
[24] |
M. Mei, K. Zhang and Q. Zhang,
Global stability of critical traveling waves with oscillations for time-delayed reaction-diffusion equation, Int. J. Numer. Anal. Model., 16 (2019), 375-397.
|
[25] |
M. Protter and H. Weinberger, Maximum Principles in Differential Equations, Prentice Hall, Englewood Cliffs (N.J., USA), 1967. |
[26] |
D. Sattinger,
On the stability of waves of nonlinear parabolic systems, Adv. Math., 22 (1976), 312-355.
doi: 10.1016/0001-8708(76)90098-0. |
[27] |
K. Schaaf,
Asymptotic behavior and traveling wave solutions for parabolic functional differential equations, Trans. Am. Math. Soc., 302 (1987), 587-615.
doi: 10.2307/2000859. |
[28] |
H. Smith, Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems, AMS, Providence (R.I. USA), 1995. |
[29] |
J. W.-H. So, J. Wu and X. Zou,
A reaction-diffusion model for a single species with age structure I. Travelling wavefronts on unbounded domains, Proc. R. Soc. A, 457 (2001), 1841-1853.
doi: 10.1098/rspa.2001.0789. |
[30] |
A. Solar, Stability of semi-wavefronts for delayed reaction-diffusion equations, preprint, arXiv: 1704.03011. |
[31] |
A. Solar and S. Trofimchuk,
Speed selection and stability of wavefronts for delayed monostable reaction-diffusion equations, J. Dyn. Diff. Eqns., 28 (2016), 1265-1292.
doi: 10.1007/s10884-015-9482-6. |
[32] |
A. Stokes,
On two types of moving front in quasilinear diffusion, Math.Biosciences, 31 (1976), 307-315.
doi: 10.1016/0025-5564(76)90087-0. |
[33] |
H. Thieme and X.-Q. Zhao,
Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models, J.Diff. Eqns., 195 (2003), 430-470.
doi: 10.1016/S0022-0396(03)00175-X. |
[34] |
E. Trofimchuk, P. Alvarado and S. Trofimchuk,
On the geometry of wave solutions of a delayed reaction-diffusion equation, J. Diff. Eqns, 246 (2009), 1422-1444.
doi: 10.1016/j.jde.2008.10.023. |
[35] |
E. Trofimchuk, M. Pinto and S. Trofimchuk,
Monotone waves for non-monotone and non-local monostable reaction-diffusion equations, J. Diff. Eqns, 261 (2016), 1203-1236.
doi: 10.1016/j.jde.2016.03.039. |
[36] |
K. Uchiyama,
The behavior of solutions of some nonlinear diffusion equations for large time, J. Math. Kyoto Univ., 18 (1978), 453-508.
doi: 10.1215/kjm/1250522506. |
[37] |
Z. Wang, W. Li and S. Ruan,
Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay, J. Diff. Eqns., 238 (2007), 153-200.
doi: 10.1016/j.jde.2007.03.025. |
[38] |
Z. Wang, W. Li and S. Ruan,
Travelling fronts in monostable equations with nonlocal delayed effects, J. Dyn. Differ. Equ., 20 (2008), 573-607.
doi: 10.1007/s10884-008-9103-8. |
[39] |
H. Weinberger,
Long-time behavior of a class of biological models, SIAM J. Math. Anal., 13 (1982), 353-396.
doi: 10.1137/0513028. |
[40] |
S.-L. Wu, W.-T. Li and S.-Y. Liu,
Oscillatory waves in reaction-diffusion equations with nonlocal delay and crossing-monostability, Non. Lin. Anal.: Real World App., 10 (2009), 3141-3151.
doi: 10.1016/j.nonrwa.2008.10.012. |
[41] |
T. Xu, S. Ji, M. Mei and J. Yin, Theoretical and numerical studies on global stability of traveling waves with oscillations for time-delayed nonlocal dispersion equations, preprint, arXiv: 1810.07484. |
[42] |
T. Yi and X. Zou,
Asymptotic behavior, spreading speeds, and traveling waves of nonmonotone dynamical systems, SIAM J. Math.Anal., 47 (2015), 3005-3034.
doi: 10.1137/14095412X. |
[43] |
T. Yi and X. Zou,
Map dynamics versus dynamics of associated delay reaction-diffusion equations with a Neumann condition, Proc. R. Soc. A, 466 (2010), 2955-2973.
doi: 10.1098/rspa.2009.0650. |
[44] |
T. Yi, Y. Chen and J. Wu,
Unimodal dynamical systems: Comparison principles, spreading speeds and travelling waves, J. Diff. Eqns, 254 (2013), 3538-3572.
doi: 10.1016/j.jde.2013.01.031. |
show all references
References:
[1] |
M. Aguerrea, C. Gomez and S. Trofimchuk,
On uniqueness of semi-wavefronts, Math. Ann., 354 (2012), 73-109.
doi: 10.1007/s00208-011-0722-8. |
[2] |
M. Bani-Yaghoub,
The traveling wavefront for a nonlocal delayed reaction-diffusion equation, J. Appl. Math. Comput., 53 (2017), 77-94.
doi: 10.1007/s12190-015-0958-7. |
[3] |
R. Benguria and A. Solar,
An estimation of level set for a non-local KPP equation with delay, Nonlinearity, 32 (2019), 777-799.
doi: 10.1088/1361-6544/aaedd7. |
[4] |
R. Benguria and A. Solar, An iterative estimation for disturbances of semi-wavefronts to the delayed Fisher-KPP equation, Proc. Amer. Math. Soc., 147 (2019), 2495-2501. |
[5] |
X. Chen,
Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolutions equations, Advances in Differential Equations, 2 (1997), 125-160.
|
[6] |
I.-L. Chern, M. Mei, X. Yang and Q. Zhang,
Stability of non-monotone critical traveling waves for reaction-diffusion equation with time-delay, J. Diff. Eqns, 259 (2015), 1503-1541.
doi: 10.1016/j.jde.2015.03.003. |
[7] |
U. Ebert and W. van Saarloos,
Front propagation into unstable states: Universal algebraic convergence towards uniformly translating pulled fronts, Phys. D, 146 (2000), 1-99.
doi: 10.1016/S0167-2789(00)00068-3. |
[8] |
A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs (N.J., USA), 1964. |
[9] |
T. Gallay,
Local stability of critical fronts in nonlinear parabolic partial differential equations, Nonlinearity, 7 (1994), 741-764.
|
[10] |
A. Gomez and S. Trofimchuk,
Global continuation of monotone wavefronts, J. Lond. Math. Soc., 89 (2014), 47-68.
doi: 10.1112/jlms/jdt050. |
[11] |
C. Gomez, H. Prado and S. Trofimchuk,
Separation dichotomy and wavefronts for a nonlinear convolution equation, J. Math. Anal. Appl., 420 (2014), 1-19.
doi: 10.1016/j.jmaa.2014.05.064. |
[12] |
S. A. Gourley, J. So and J. Wu,
Non-locality of reaction-diffusion equations induced by delay: Biological modeling and nonlinear dynamics, J. Math. Sci., 124 (2004), 5119-5153.
|
[13] |
A. Halanay, Differential Equations: Stability, Oscillations, Time Lags, Academic Press, New York (N.Y., USA), 1966.
![]() ![]() |
[14] |
S.-B. Hsu and X.-Q. Zhao,
Spreading speeds and traveling waves for nonmonotone integrodifference equations, SIAM J. Math. Anal., 40 (2008), 776-789.
doi: 10.1137/070703016. |
[15] |
R. Huang, M. Mei and Y. Wang,
Planar traveling waves for nonlocal dispersion equation with monostable nonlinearity, Discret Contin. Dyn. Syst., 32 (2012), 3621-3649.
doi: 10.3934/dcds.2012.32.3621. |
[16] |
R. Huang, M. Mei, K. Zhang and Q. Zhang,
Asymptotic stability of non-monotone traveling waves for time-delayed nonlocal dispersion equations, Discrete Contin. Dyn. Syst., 36 (2016), 1331-1353.
doi: 10.3934/dcds.2016.36.1331. |
[17] |
K. Kirchgassner,
On the nonlinear dynamics of travelling fronts, J. Diff. Eqs., 96 (1992), 256-278.
doi: 10.1016/0022-0396(92)90153-E. |
[18] |
A. Kolmogorov, I. Petrovskii and N. Piskunov,
Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, (French) [Study of a Diffusion Equation That Is Related to the Growth of a Quality of Matter and Its Application to a Biological Problem], Moscow Uni. Bull. Math., 1 (1937), 1-25.
|
[19] |
X. Liang and X.-Q. Zhao,
Spreading speeds and traveling waves for abstract monostable evolution systems, J. Funct. Anal., 259 (2010), 857-903.
doi: 10.1016/j.jfa.2010.04.018. |
[20] |
C.-K. Lin, C.-T. Lin, Y. Lin and M. Mei,
Exponential stability of nonmonotone traveling waves for Nicholson's blowflies equation, SIAM J. Math. Anal., 46 (2014), 1053-1084.
doi: 10.1137/120904391. |
[21] |
G. Lv and M. Wang, Nonlinear stability of travelling wave fronts for delayed reaction diffusion equations, Nonlinearity, 23 (2010), 845-873.
doi: 10.1088/0951-7715/23/4/005. |
[22] |
S. Ma and J. Wu,
Existence, uniqueness and asymptotic stability of traveling wavefronts in a non-local delayed diffusion equation, J. Dyn. Diff. Eqns., 19 (2007), 391-436.
doi: 10.1007/s10884-006-9065-7. |
[23] |
M. Mei, Ch. Ou and X.-Q. Zhao,
Global stability of monostable traveling waves for nonlocal time-delayed reaction-diffusion equations, SIAM J. Math. Anal., 42 (2010), 2762-2790.
doi: 10.1137/090776342. |
[24] |
M. Mei, K. Zhang and Q. Zhang,
Global stability of critical traveling waves with oscillations for time-delayed reaction-diffusion equation, Int. J. Numer. Anal. Model., 16 (2019), 375-397.
|
[25] |
M. Protter and H. Weinberger, Maximum Principles in Differential Equations, Prentice Hall, Englewood Cliffs (N.J., USA), 1967. |
[26] |
D. Sattinger,
On the stability of waves of nonlinear parabolic systems, Adv. Math., 22 (1976), 312-355.
doi: 10.1016/0001-8708(76)90098-0. |
[27] |
K. Schaaf,
Asymptotic behavior and traveling wave solutions for parabolic functional differential equations, Trans. Am. Math. Soc., 302 (1987), 587-615.
doi: 10.2307/2000859. |
[28] |
H. Smith, Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems, AMS, Providence (R.I. USA), 1995. |
[29] |
J. W.-H. So, J. Wu and X. Zou,
A reaction-diffusion model for a single species with age structure I. Travelling wavefronts on unbounded domains, Proc. R. Soc. A, 457 (2001), 1841-1853.
doi: 10.1098/rspa.2001.0789. |
[30] |
A. Solar, Stability of semi-wavefronts for delayed reaction-diffusion equations, preprint, arXiv: 1704.03011. |
[31] |
A. Solar and S. Trofimchuk,
Speed selection and stability of wavefronts for delayed monostable reaction-diffusion equations, J. Dyn. Diff. Eqns., 28 (2016), 1265-1292.
doi: 10.1007/s10884-015-9482-6. |
[32] |
A. Stokes,
On two types of moving front in quasilinear diffusion, Math.Biosciences, 31 (1976), 307-315.
doi: 10.1016/0025-5564(76)90087-0. |
[33] |
H. Thieme and X.-Q. Zhao,
Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models, J.Diff. Eqns., 195 (2003), 430-470.
doi: 10.1016/S0022-0396(03)00175-X. |
[34] |
E. Trofimchuk, P. Alvarado and S. Trofimchuk,
On the geometry of wave solutions of a delayed reaction-diffusion equation, J. Diff. Eqns, 246 (2009), 1422-1444.
doi: 10.1016/j.jde.2008.10.023. |
[35] |
E. Trofimchuk, M. Pinto and S. Trofimchuk,
Monotone waves for non-monotone and non-local monostable reaction-diffusion equations, J. Diff. Eqns, 261 (2016), 1203-1236.
doi: 10.1016/j.jde.2016.03.039. |
[36] |
K. Uchiyama,
The behavior of solutions of some nonlinear diffusion equations for large time, J. Math. Kyoto Univ., 18 (1978), 453-508.
doi: 10.1215/kjm/1250522506. |
[37] |
Z. Wang, W. Li and S. Ruan,
Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay, J. Diff. Eqns., 238 (2007), 153-200.
doi: 10.1016/j.jde.2007.03.025. |
[38] |
Z. Wang, W. Li and S. Ruan,
Travelling fronts in monostable equations with nonlocal delayed effects, J. Dyn. Differ. Equ., 20 (2008), 573-607.
doi: 10.1007/s10884-008-9103-8. |
[39] |
H. Weinberger,
Long-time behavior of a class of biological models, SIAM J. Math. Anal., 13 (1982), 353-396.
doi: 10.1137/0513028. |
[40] |
S.-L. Wu, W.-T. Li and S.-Y. Liu,
Oscillatory waves in reaction-diffusion equations with nonlocal delay and crossing-monostability, Non. Lin. Anal.: Real World App., 10 (2009), 3141-3151.
doi: 10.1016/j.nonrwa.2008.10.012. |
[41] |
T. Xu, S. Ji, M. Mei and J. Yin, Theoretical and numerical studies on global stability of traveling waves with oscillations for time-delayed nonlocal dispersion equations, preprint, arXiv: 1810.07484. |
[42] |
T. Yi and X. Zou,
Asymptotic behavior, spreading speeds, and traveling waves of nonmonotone dynamical systems, SIAM J. Math.Anal., 47 (2015), 3005-3034.
doi: 10.1137/14095412X. |
[43] |
T. Yi and X. Zou,
Map dynamics versus dynamics of associated delay reaction-diffusion equations with a Neumann condition, Proc. R. Soc. A, 466 (2010), 2955-2973.
doi: 10.1098/rspa.2009.0650. |
[44] |
T. Yi, Y. Chen and J. Wu,
Unimodal dynamical systems: Comparison principles, spreading speeds and travelling waves, J. Diff. Eqns, 254 (2013), 3538-3572.
doi: 10.1016/j.jde.2013.01.031. |
[1] |
Zhao-Xing Yang, Guo-Bao Zhang, Ge Tian, Zhaosheng Feng. Stability of non-monotone non-critical traveling waves in discrete reaction-diffusion equations with time delay. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 581-603. doi: 10.3934/dcdss.2017029 |
[2] |
Shi-Liang Wu, Wan-Tong Li, San-Yang Liu. Exponential stability of traveling fronts in monostable reaction-advection-diffusion equations with non-local delay. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 347-366. doi: 10.3934/dcdsb.2012.17.347 |
[3] |
Joelma Azevedo, Juan Carlos Pozo, Arlúcio Viana. Global solutions to the non-local Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2515-2535. doi: 10.3934/dcdsb.2021146 |
[4] |
Rui Huang, Ming Mei, Kaijun Zhang, Qifeng Zhang. Asymptotic stability of non-monotone traveling waves for time-delayed nonlocal dispersion equations. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1331-1353. doi: 10.3934/dcds.2016.36.1331 |
[5] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[6] |
Hirotada Honda. Global-in-time solution and stability of Kuramoto-Sakaguchi equation under non-local Coupling. Networks and Heterogeneous Media, 2017, 12 (1) : 25-57. doi: 10.3934/nhm.2017002 |
[7] |
Ming Mei. Stability of traveling wavefronts for time-delayed reaction-diffusion equations. Conference Publications, 2009, 2009 (Special) : 526-535. doi: 10.3934/proc.2009.2009.526 |
[8] |
Hongjie Dong, Doyoon Kim. Schauder estimates for a class of non-local elliptic equations. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2319-2347. doi: 10.3934/dcds.2013.33.2319 |
[9] |
Yuanhong Wei, Xifeng Su. On a class of non-local elliptic equations with asymptotically linear term. Discrete and Continuous Dynamical Systems, 2018, 38 (12) : 6287-6304. doi: 10.3934/dcds.2018154 |
[10] |
A. V. Bobylev, Vladimir Dorodnitsyn. Symmetries of evolution equations with non-local operators and applications to the Boltzmann equation. Discrete and Continuous Dynamical Systems, 2009, 24 (1) : 35-57. doi: 10.3934/dcds.2009.24.35 |
[11] |
Sergiu Aizicovici, Simeon Reich. Anti-periodic solutions to a class of non-monotone evolution equations. Discrete and Continuous Dynamical Systems, 1999, 5 (1) : 35-42. doi: 10.3934/dcds.1999.5.35 |
[12] |
Nadia Loy, Luigi Preziosi. Stability of a non-local kinetic model for cell migration with density dependent orientation bias. Kinetic and Related Models, 2020, 13 (5) : 1007-1027. doi: 10.3934/krm.2020035 |
[13] |
Eugen Stumpf. Local stability analysis of differential equations with state-dependent delay. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3445-3461. doi: 10.3934/dcds.2016.36.3445 |
[14] |
Tao Wang. Global dynamics of a non-local delayed differential equation in the half plane. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2475-2492. doi: 10.3934/cpaa.2014.13.2475 |
[15] |
Antônio Luiz Pereira, Severino Horácio da Silva. Continuity of global attractors for a class of non local evolution equations. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 1073-1100. doi: 10.3934/dcds.2010.26.1073 |
[16] |
Kyudong Choi. Persistence of Hölder continuity for non-local integro-differential equations. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1741-1771. doi: 10.3934/dcds.2013.33.1741 |
[17] |
Raffaella Servadei, Enrico Valdinoci. A Brezis-Nirenberg result for non-local critical equations in low dimension. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2445-2464. doi: 10.3934/cpaa.2013.12.2445 |
[18] |
Imran H. Biswas, Indranil Chowdhury. On the differentiability of the solutions of non-local Isaacs equations involving $\frac{1}{2}$-Laplacian. Communications on Pure and Applied Analysis, 2016, 15 (3) : 907-927. doi: 10.3934/cpaa.2016.15.907 |
[19] |
Huxiao Luo, Xianhua Tang, Zu Gao. Sign-changing solutions for non-local elliptic equations with asymptotically linear term. Communications on Pure and Applied Analysis, 2018, 17 (3) : 1147-1159. doi: 10.3934/cpaa.2018055 |
[20] |
Carlos Lizama, Marina Murillo-Arcila. Maximal regularity for time-stepping schemes arising from convolution quadrature of non-local in time equations. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022032 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]