[1]
|
A. Ambrosetti and D. Ruiz, Multiple bound states for the Schrödinger-Poisson problem, Commun. Contemp. Math., 10 (2008), 391-404.
doi: 10.1142/S021919970800282X.
|
[2]
|
A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 345 (2008), 90-108.
doi: 10.1016/j.jmaa.2008.03.057.
|
[3]
|
V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 11 (1998), 283-293.
doi: 10.12775/TMNA.1998.019.
|
[4]
|
V. Benci and D. Fortunato, Solitary waves of the nonlinear Klein-Gordon equation coupled with Maxwell equations, Rev. Math. Phys., 14 (2002), 409-420.
doi: 10.1142/S0129055X02001168.
|
[5]
|
R. Benguria, H. Brezis and E. Lieb, The Thomas-Fermi-von Weizsäcker theory of atoms and molecules, Comm. Math. Phys., 79 (1981), 167-180.
doi: 10.1007/BF01942059.
|
[6]
|
D. Bonheure, S. Cingolani and J. Van Schaftingen, The logarithmic Choquard equation: Sharp asymptotics and nondegeneracy of the groundstate, J. Functional Analysis, 272 (2017), 5255-5281.
doi: 10.1016/j.jfa.2017.02.026.
|
[7]
|
I. Catto and P. Lions, Binding of atoms and stability of molecules in hartree and thomas-fermi type theories, Comm. Partial Differential Equations, 18 (1993), 1149-1159.
doi: 10.1080/03605309308820967.
|
[8]
|
G. Cerami and J. Vaira, Positive solutions for some non-autonomous Schrödinger-Poisson systems, J. Differential Equations, 248 (2010), 521-543.
doi: 10.1016/j.jde.2009.06.017.
|
[9]
|
S. Chen and X. H. Tang, Ground state sign-changing solutions for a class of Schrödinger-Poisson type problems in $\mathbb R^3$, Z. Angew. Math. Phys., 67 (2016), Art. 102, 18 pp.
doi: 10.1007/s00033-016-0695-2.
|
[10]
|
S. Chen and X. H. Tang, Improved results for Klein-Gordon-Maxwell systems with general nonlinearity, Discrete Contin. Dyn. Syst.-A, 38 (2018), 2333-2348.
doi: 10.3934/dcds.2018096.
|
[11]
|
S. Chen and X. H. Tang, Ground state solutions of Schrödinger-Poisson systems with variable potential and convolution nonlinearity, J. Math. Anal. Appl., 473 (2019), 87-111.
doi: 10.1016/j.jmaa.2018.12.037.
|
[12]
|
S. Chen and X. H. Tang, Geometrically distinct solutions for Klein-Gordon-Maxwell systems with super-linear nonlinearities, Appl. Math. Lett., 90 (2019), 188-193.
doi: 10.1016/j.aml.2018.11.007.
|
[13]
|
S. Cingolani and T. Weth, On the planar Schrödinger-Poisson system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 169-197.
doi: 10.1016/j.anihpc.2014.09.008.
|
[14]
|
G. Coclite, A multiplicity result for the nonlinear Schrödinger-Maxwell equations, Commun. Appl. Anal., 7 (2003), 417-423.
|
[15]
|
T. D'Aprile and D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 893-906.
doi: 10.1017/S030821050000353X.
|
[16]
|
M. Du and T. Weth, Ground states and high energy solutions of the planar Schrödinger-Poisson system, Nonlinearity, 30 (2017), 3492-3515.
doi: 10.1088/1361-6544/aa7eac.
|
[17]
|
L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on $\mathbb R^N$, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 787-809.
doi: 10.1017/S0308210500013147.
|
[18]
|
Y. Jiang and H. Zhou, Schrödinger-Poisson system with steep potential well, J. Differential Equations, 251 (2011), 582-608.
doi: 10.1016/j.jde.2011.05.006.
|
[19]
|
F. Li, Y. Li and J. Shi, Existence of positive solutions to Schrödinger-Poisson type systems with critical exponent, Commun. Contemp. Math., 16 (2014), 1450036, 28pp.
doi: 10.1142/S0219199714500369.
|
[20]
|
G. Li and C. Wang, The existence of a nontrivial solution to a nonlinear elliptic problem of linking type without the Ambrosetti-Rabinowitz condition, Ann. Acad. Sci. Fenn. Math., 36 (2011), 461-480.
doi: 10.5186/aasfm.2011.3627.
|
[21]
|
Y. Li, F. Li and J. Shi, Existence and multiplicity of positive solutions to Schrödinger-Poisson type systems with critical nonlocal term, Calc. Var. Partial Differential Equations, 56 (2017), Art. 134, 17 pp.
doi: 10.1007/s00526-017-1229-2.
|
[22]
|
E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev inequality and related inequalities, Ann. of Math., 118 (1983), 349-374.
doi: 10.2307/2007032.
|
[23]
|
E. Lieb and M. Loss, Analysis, vol. 14 of Graduate Studies in Mathematics, 2nd ed., American Mathematical Society, Providence, RI, 2001.
doi: 10.1090/gsm/014.
|
[24]
|
E. H. Lieb, Thomas-Fermi and related theories of atoms and molecules, Rev. Modern Phys., 53 (1981), 603-641.
doi: 10.1103/RevModPhys.53.603.
|
[25]
|
P. Lions, The concentration-compactness principle in the calculus of variations. the locally compact case. Ⅰ & Ⅱ, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109–145,223–283.
doi: 10.1016/S0294-1449(16)30422-X.
|
[26]
|
P. Lions, Solutions of Hartree-Fock equations for Coulomb systems, Comm. Math. Phys., 109 (1987), 33-97.
doi: 10.1007/BF01205672.
|
[27]
|
P. A. Markowich, C. A. Ringhofer and C. Schmeiser, Semiconductor Equations, Springer-Verlag, Vienna, 1990.
doi: 10.1007/978-3-7091-6961-2.
|
[28]
|
D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237 (2006), 655-674.
doi: 10.1016/j.jfa.2006.04.005.
|
[29]
|
J. Stubbe, Bound states of two-dimensional Schrödinger-Newton equations, eprint, arXiv: 0807.4059.
|
[30]
|
J. Sun, H. Chen and J. Nieto, On ground state solutions for some non-autonomous Schrödinger-Maxwell systems, J. Differential Equations, 252 (2012), 3365-3380.
doi: 10.1016/j.jde.2011.12.007.
|
[31]
|
J. Sun and S. Ma, Ground state solutions for some Schrödinger-Poisson systems with periodic potentials, J. Differential Equations, 260 (2016), 2119-2149.
doi: 10.1016/j.jde.2015.09.057.
|
[32]
|
X. Tang, Non-Nehar manifold method for asymptotically periodic Schrödinger equation, Sci. China Math., 58 (2015), 715-728.
doi: 10.1007/s11425-014-4957-1.
|
[33]
|
X. Tang and X. Lin, Existence of ground state solutions of Nehari-Pankov type to Schrödinger systems, Sci. China Math, (2018), 1–22.
doi: 10.1007/s11425-017-9332-3.
|
[34]
|
X. Tang and S. Chen, Ground state solutions of Nehari-Pohozaev type for Kirchhoff-type problems with general potentials, Calc. Var. Partial Differential Equations, 56 (2017), Art. 110, 25 pp.
doi: 10.1007/s00526-017-1214-9.
|
[35]
|
X. Tang and S. Chen, Ground state solutions of Nehari-Pohozaev type for Schrödinger-Poisson problems with general potentials, Disc. Contin. Dyn. Syst.-A, 37 (2017), 4973-5002.
doi: 10.3934/dcds.2017214.
|
[36]
|
X. Tang and B. Cheng, Ground state sign-changing solutions for Kirchhoff type problems in bounded domains, J. Differential Equations, 261 (2016), 2384-2402.
doi: 10.1016/j.jde.2016.04.032.
|
[37]
|
J. Wang, L. Tian, J. Xu and F. Zhang, Existence and concentration of positive solutions for semilinear Schrödinger-Poisson systems in $\mathbb R^3$, Calc. Var. Partial Differential Equations, 48 (2013), 243-273.
doi: 10.1007/s00526-012-0548-6.
|
[38]
|
Z. Wang and H. Zhou, Positive solution for a nonlinear stationary Schrödinger-Poisson system in $\mathbb R^3$, Discrete Contin. Dyn. Syst., 18 (2007), 809-816.
doi: 10.3934/dcds.2007.18.809.
|
[39]
|
Z. Wang and H. Zhou, Sign-changing solutions for the nonlinear Schrödinger-Poisson system in $\mathbb R^3$, Calc. Var. Partial Differential Equations, 52 (2015), 927-943.
doi: 10.1007/s00526-014-0738-5.
|
[40]
|
M. Willem, Minimax theorems, Progress in Nonlinear Differential Equations and their Applications, 24, Birkhäuser Boston Inc., Boston, MA, 1996.
doi: 10.1007/978-1-4612-4146-1.
|
[41]
|
L. Zhao and F. Zhao, On the existence of solutions for the Schrödinger-Poisson equations, J. Math. Anal. Appl., 346 (2008), 155-169.
doi: 10.1016/j.jmaa.2008.04.053.
|