\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The nonlinear Schrödinger equations with harmonic potential in modulation spaces

Abstract Full Text(HTML) Related Papers Cited by
  • We study nonlinear Schrödinger $ i\partial_tu-Hu = F(u) $ (NLSH) equation associated to harmonic oscillator $ H = -\Delta +|x|^2 $ in modulation spaces $ M^{p,q}. $ When $ F(u) = (|x|^{-\gamma}\ast |u|^2)u, $ we prove global well-posedness for (NLSH) in modulation spaces $ M^{p,p}(\mathbb R^d) $ $ (1\leq p < 2d/(d+\gamma), 0<\gamma< \min \{ 2, d/2\}). $ When $ F(u) = (K\ast |u|^{2k})u $ with $ K\in \mathcal{F}L^q $ (Fourier-Lebesgue spaces) or $ M^{\infty,1} $ (Sjöstrand's class) or $ M^{1, \infty}, $ some local and global well-posedness for (NLSH) are obtained in some modulation spaces. As a consequence, we can get local and global well-posedness for (NLSH) in a function spaces$ - $which are larger than usual $ L^p_s- $Sobolev spaces.

    Mathematics Subject Classification: Primary: 35Q55, 35L05, 42B35; Secondary: 35A01.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlineare Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 343, Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.
    [2] Á. BényiK. GröchenigK. A. Okoudjou and L. G. Rogers, Unimodular Fourier multipliers for modulation spaces, J. Funct. Anal., 246 (2007), 366-384.  doi: 10.1016/j.jfa.2006.12.019.
    [3] Á. Bényi and K. A. Okoudjou, Local well-posedness of nonlinear dispersive equations on modulation spaces, Bull. Lond. Math. Soc., 41 (2009), 549-558.  doi: 10.1112/blms/bdp027.
    [4] D. G. Bhimani, The Cauchy problem for the Hartree type equation in modulation spaces, Nonlinear Anal., 130 (2016), 190-201.  doi: 10.1016/j.na.2015.10.002.
    [5] D. G. Bhimani, Global well-posedness for fractional Hartree equation on modulation spaces and Fourier algebra, available at arXiv: 1810.04076.
    [6] D. G. Bhimani and P. K. Ratnakumar, Functions operating on modulation spaces and nonlinear dispersive equations, J. Funct. Anal., 270 (2016), 621-648.  doi: 10.1016/j.jfa.2015.10.017.
    [7] D. G. Bhimani, R. Balhara and S. Thangavelu, Hermite Multipliers on Modulation Spaces, In: Delgado J., Ruzhansky M. (eds) Analysis and Partial Differential Equations: Perspectives from Developing Countries, Springer Proceedings in Mathematics & Statistics, Springer, Cham, 275 (2019), 42–64.
    [8] C. C. BradleyC. A. Sackett and R. G. Hulet, Bose-Einstein condensation of lithium: Observation of limited condensate number, Phys. Rev. Lett., 78 (1997), 985-989.  doi: 10.1103/PhysRevLett.78.985.
    [9] P. Cao and R. Carles, Semi-classical wave packet dynamics for Hartree equations, Rev. Math. Phys., 23 (2011), 933-967.  doi: 10.1142/S0129055X11004485.
    [10] R. Carles, Remarks on nonlinear Schrödinger equations with harmonic potential, Ann. Henri Poincaré, 3 (2002), 757-772.  doi: 10.1007/s00023-002-8635-4.
    [11] R. Carles, Nonlinear Schrödinger equation with time dependent potential, Commun. Math. Sci., 9 (2011), 937-964.  doi: 10.4310/CMS.2011.v9.n4.a1.
    [12] R. Carles, Nonlinear Schrödinger equations with repulsive harmonic potential and applications, SIAM J. Math. Anal., 35 (2003), 823-843.  doi: 10.1137/S0036141002416936.
    [13] R. CarlesN. Mauser and H. P. Stimming, (Semi)classical limit of the Hartree equation with harmonic potential, SIAM J. Appl. Math., 66 (2005), 29-56.  doi: 10.1137/040609732.
    [14] E. Cordero and F. Nicola, On the Schrödinger equation with potential in modulation spaces, J. Pseudo-Differ. Oper. Appl., 5 (2014), 319-341.  doi: 10.1007/s11868-014-0096-2.
    [15] E. CorderoF. Nicola and L. Rodino, Schrödinger equations with rough Hamiltonians, Discrete Contin. Dyn. Syst., 35 (2015), 4805-4821.  doi: 10.3934/dcds.2015.35.4805.
    [16] E. Cordero, K. Gröchenig, F. Nicola and L. Rodino, Generalized metaplectic operators and the Schrödinger equation with a potential in the Sjöstrand class, J. Math. Phys., 55 (2014), 081506, 17 pp. doi: 10.1063/1.4892459.
    [17] J. CunananM. Kobayashi and M. Sugimoto, Mitsuru, Inclusion relations between $L^p-$Sobolev and Wiener amalgam spaces, J. Funct. Anal., 268 (2015), 239-254.  doi: 10.1016/j.jfa.2014.10.017.
    [18] F. DalfovoS. GiorginiP. L. Pitaevskii and S. Stringari, Theory of Bose-Einstein condensation in trapped gases, Rev. Modern Phys., 71 (1999), 463-512. 
    [19] H. G. Feichtinger, Modulation Spaces on Locally Compact Abelian Groups, Technical report, University of Vienna, 1983.
    [20] K. Gröchenig, Foundations of Time-Frequency Analysis, Birkhäuser Boston, Inc., Boston, MA, 2001.
    [21] K. KatoM. Kobayashi and S. Ito, Remark on wave front sets of solutions to Schrödinger equation of a free particle and a harmonic oscillator, SUT J. Math., 47 (2011), 175-183. 
    [22] K. KatoM. Kobayashi and S. Ito, Estimates on modulation spaces for Schrödinger evolution operators with quadratic and sub-quadratic potentials, J. Funct. Anal., 266 (2014), 733-753.  doi: 10.1016/j.jfa.2013.08.017.
    [23] M. Kobayashi and M. Sugimoto, The inclusion relation between Sobolev and modulation spaces, J. Funct. Anal., 260 (2011), 3189-3208.  doi: 10.1016/j.jfa.2011.02.015.
    [24] F. Nicola, Phase space analysis of semilinear parabolic equations, J. Funct. Anal., 267 (2014), 727-743.  doi: 10.1016/j.jfa.2014.05.007.
    [25] K. Okoudjou, Embedding of some classical Banach spaces into modulation spaces, Proc. Amer. Math. Soc., 132 (2004), 1639-1647.  doi: 10.1090/S0002-9939-04-07401-5.
    [26] M. RuzhanskyM. Sugimoto and B. Wang, Modulation spaces and nonlinear evolution equations, Progr Math, 301 (2012), 267-283.  doi: 10.1007/978-3-0348-0454-7_14.
    [27] T. Saanouni, Global well-posedness and instability of a nonlinear Schrödinger equation with harmonic potential, J. Aust. Math. Soc., 98 (2015), 78-103.  doi: 10.1017/S1446788714000391.
    [28] M. Sugimoto and N. Tomita, The dilation property of modulation spaces and their inclusion relation with Besov spaces, J. Funct. Anal., 248 (2007), 79-106.  doi: 10.1016/j.jfa.2007.03.015.
    [29] T. Tao, Nonlinear Dispersive Equations, Local and global analysis, CBMS Regional Conference Series in Mathematics, 106, American Mathematical Society, 2006. doi: 10.1090/cbms/106.
    [30] S. Thangavelu, Lectures on Hermite and Laguerre Expansions, vol. 42 of Mathematical Notes. Princeton University Press, Princeton, 1993.
    [31] J. Toft, Continuity properties for modulation spaces, with applications to pseudo-differential calculus. I., J. Funct. Anal., 207 (2004), 399-429.  doi: 10.1016/j.jfa.2003.10.003.
    [32] T. Tsurumi and M. Wadati, Collapses of wave functions in multidimensional nonlinear Schrödinger equations under harmonic potential, J. Phys. Soc. Japan, 67 (1998), 93-95.  doi: 10.1143/JPSJ.67.93.
    [33] B. Wang and H. Hudzik, The global Cauchy problem for the NLS and NLKG with small rough data, J. Differential Equations, 232 (2007), 36-73.  doi: 10.1016/j.jde.2006.09.004.
    [34] B. WangL. Zhao and B. Guo, Isometric decomposition operators, function spaces $E^{\lambda}_{p, q}$ and applications to nonlinear evolution equations, J. Funct. Anal., 233 (2006), 1-39.  doi: 10.1016/j.jfa.2005.06.018.
    [35] B. Wang, Z. Huo, C. Hao and Z. Guo, Harmonic Analysis Method for Nonlinear Evolution Equations. I. World Scientific Publishing Co. Pte. Lt., 2011. doi: 10.1142/9789814360746.
    [36] J. Zhang, Sharp threshold for blowup and global existence in nonlinear Schrödinger equations under a harmonic potential, Comm. Partial Differential Equations, 30 (2005), 1429-1443.  doi: 10.1080/03605300500299539.
  • 加载中
SHARE

Article Metrics

HTML views(207) PDF downloads(268) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return