\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the isomorphism problem for non-minimal transformations with discrete spectrum

Abstract Full Text(HTML) Related Papers Cited by
  • The article addresses the isomorphism problem for non-minimal topological dynamical systems with discrete spectrum, giving a solution under appropriate topological constraints. Moreover, it is shown that trivial systems, group rotations and their products, up to factors, make up all systems with discrete spectrum. These results are then translated into corresponding results for non-ergodic measure-preserving systems with discrete spectrum.

    Mathematics Subject Classification: Primary: 37A05, 37B05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] A. Arhangel'skii and M. Tkachenko, Topological Groups and Related Structures, Atlantis Press, 2008. doi: 10.2991/978-94-91216-35-0.
    [2] N. Bourbaki, General Topology: Chapters 1–4, Springer-Verlag, Berlin, 1989.
    [3] J. R. Choksi, Non-ergodic transformations with discrete spectrum, Illinois J. Math., 9 (1965), 307-320.  doi: 10.1215/ijm/1256067892.
    [4] J. Dugundji, Topology, Allyn and Bacon, 1966.
    [5] T. Eisner, B. Farkas, M. Haase and R. Nagel, Operator Theoretic Aspects of Ergodic Theory, Springer, 2015. doi: 10.1007/978-3-319-16898-2.
    [6] R. Ellis, A semigroup associated with a transformation group, Trans. Amer. Math. Soc., 94 (1960), 272-281.  doi: 10.1090/S0002-9947-1960-0123636-3.
    [7] E. Glasner, Enveloping semigroups in topological dynamics, Topol. Appl., 154 (2007), 2344-2363.  doi: 10.1016/j.topol.2007.03.009.
    [8] A. Gleason, Projective topological spaces, Illinois J. Math., 2 (1958), 482-489.  doi: 10.1215/ijm/1255454110.
    [9] M. Haase and N. Moriakov, On systems with quasi-discrete spectrum, Stud. Math., 241 (2018), 173-199.  doi: 10.4064/sm8756-6-2017.
    [10] P. R. Halmos and J. von Neumann, Operator methods in classical mechanics, Ⅱ, Ann. Math., 43 (1942), 332-350.  doi: 10.2307/1968872.
    [11] K. Jacobs, Ergodentheorie und fastperiodische Funktionen auf Halbgruppen, Math. Z., 64 (1956), 298-338.  doi: 10.1007/BF01166575.
    [12] J. Kwiatkowski, Classification of non-ergodic dynamical systems with discrete spectra, Comment. Math., 22 (1981), 263-274. 
    [13] E. Michael, Continuous selections ${\rm I}$, Ann. Math., 63 (1956), 361-382.  doi: 10.2307/1969615.
    [14] J. Renault, A Groupoid Approach to ${\rm C}^*$-Algebras, vol. 793 of Lecture Notes in Mathematics, Springer, Berlin, Heidelberg, 1980.
    [15] H. Schaefer, Banach Lattices and Positive Operators, Springer-Verlag, New York-Heidelberg, 1974.
    [16] M. Takesaki, Theory of Operator Algebras I, Springer, 1979.
    [17] J. von Neumann, Zur Operatorenmethode in der klassischen Mechanik, Ann. Math., 33 (1932), 587-642.  doi: 10.2307/1968537.
  • 加载中
SHARE

Article Metrics

HTML views(266) PDF downloads(348) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return