-
Previous Article
Infinitely many segregated solutions for coupled nonlinear Schrödinger systems
- DCDS Home
- This Issue
-
Next Article
Local-in-space blow-up criteria for two-component nonlinear dispersive wave system
Weighted elliptic estimates for a mixed boundary system related to the Dirichlet-Neumann operator on a corner domain
School of Mathematics, Sun Yat-sen University, No.135 Xingangxi Road, Haizhu District, Guangzhou 510275, China |
Based on the $ H^2 $ existence of the solution, we investigate weighted estimates for a mixed boundary elliptic system in a two-dimensional corner domain, when the contact angle $ \omega\in(0,\pi/2) $. This system is closely related to the Dirichlet-Neumann operator in the water-waves problem, and the weight we choose is decided by singularities of the mixed boundary system. Meanwhile, we also prove similar weighted estimates with a different weight for the Dirichlet boundary problem as well as the Neumann boundary problem when $ \omega\in(0,\pi) $.
References:
[1] |
J. Banasiak and G. F. Roach,
On mixed boundary value problems of Dirichlet oblique-derivative type in plane domains with piecewise differentiable boundary, Journal of differential equations, 79 (1989), 111-131.
doi: 10.1016/0022-0396(89)90116-2. |
[2] |
M. Sh. Birman and G. E. Skvortsov, On the quadratic integrability of the highest derivatives of the Dirichlet problem in a domain with piecewis smooth boundary, Izv. Vyssh. Uchebn. Zaved. Mat., 1962 (1962), 11–21 (in Russsian). |
[3] |
M. Borsuk and V. A. Kondrat'ev, Elliptic Boundary Value Problems of Second Order in Piecewise Smooth Domains, North-Holland Mathematical Library, 69. Elsevier Science B.V., Amsterdam, 2006.
doi: 10.1016/S0924-6509(06)80026-7. |
[4] |
M. Costabel and M. Dauge,
General edge asymptotics of solutions of second order elliptic boundary value problems, Ⅰ, Proc. Roy. Soc. Edinburgh Sect. A, 123 (1993), 109-155.
doi: 10.1017/S0308210500021272. |
[5] |
M. Costabel and M. Dauge,
General edge asymptotics of solutions of second order elliptic boundary value problems Ⅱ., Proc. Roy. Soc. Edinburgh Sect. A, 123 (1993), 157-184.
doi: 10.1017/S0308210500021272. |
[6] |
M. Dauge, Elliptic Boundary Value Problems on Corner Domains, Smoothness and Asymptotics of Solutions, Lecture Notes in Mathematics, 1341. Springer-Verlag, Berlin, 1988.
doi: 10.1007/BFb0086682. |
[7] |
M. Dauge, S. Nicaise, M. Bourlard and M. S. Lubuma,
Coefficients des singularités pour des problèmes aux limites elliptiques sur un domaine à points coniques Ⅰ: résultats généraux pour le problème de Dirichlet, Mathematical Modelling and Numerical Analysis, 24 (1990), 27-52.
doi: 10.1051/m2an/1990240100271. |
[8] |
G. I. Eskin, General boundary values problems for equations of principle type in a plane domain with angular points, Uspekhi Mat. Nauk, 18 (1963), 241–242 (in Russian). Google Scholar |
[9] |
P. Grisvard, Elliptic Problems in Non Smooth Domains, Pitman Advanced Publishing Program, Boston-London-Melbourne, 1985. |
[10] |
P. Grisvard, Singularities in Boundary Value Problems, Research notes in applied mathematics, Springer-Verlag, 1992. |
[11] |
V. A. Kondrat'ev, Boundary Value Problems for Elliptic Equations in Conical Regions, , Soviet Math. Dokl., 1963. Google Scholar |
[12] |
V. A. Kondrat'ev,
Boundary value problems for elliptic equations in domains with conical or angular points, Trans. Moscow Math. Soc., 16 (1967), 209-292.
|
[13] |
V. A. Kondart'ev and O. A. Oleinik,
Boundary value problems for partial differential equations in nonsmooth domains, Russian Math. Surveys, 38 (1983), 3-76.
|
[14] |
V. A. Kozlov, V. G. Mazya and J. Rossmann, Elliptic Boundary Value Problems in Domains with Point Singularities, Mathematical Surveys and Monographs, 52, American Mathematical Society, Providence, RI, 1997. |
[15] |
D. Lannes,
Well-posedness of the water-wave equations, Journal of the American Math. Society, 18 (2005), 605-654.
doi: 10.1090/S0894-0347-05-00484-4. |
[16] |
Ya. B. Lopatinskiy, On one type of singular integral equations, Teoret. i Prikl. Mat. (Lvov), 2 (1963), 53–57 (in Russsian). |
[17] |
V. G. Maz'ya and J. Rossmann, Elliptic Equations in Polyhedral Domains, Mathematical Surveys and Monographs, 162, American Mathematical Society, Providence, RI, 2010.
doi: 10.1090/surv/162. |
[18] |
V. G. Maz'ya, The solvability of the Dirichlet problem for a region with a smooth irregular boundary, Vestnik Leningrad. Univ., 19 (1964), 163–165 (in Russian). |
[19] |
V. G. Maz'ya, The behavior near the boundary of the solution of the Dirichlet problem for an elliptic equation of the second order in divergence form, Mat. Zametki, 2 (1967), 209–220 (in Russian). |
[20] |
V. G. Maz'ya and B. A. Plamenevskiy,
On the coefficients in the asymptotics of solutions of elliptic boundary value problems in domains with conical points, Math. Nachr., 76 (1977), 29-60.
doi: 10.1002/mana.19770760103. |
[21] |
V. G. Maz'ya and B. A. Plamenevskiy, $L^p$ estimates of solutions of elliptic boundary value problems in a domains with edges, Trans. Moscow Math. Soc., 1 (1980), 49-97. Google Scholar |
[22] |
V. G. Maz'ya and B. A. Plamenevskiy,
Coefficients in the asymptotics of the solutions of an elliptic boundary value problem in a cone, Journal of Soviet Mathematics, 9 (1978), 750-764.
doi: 10.1007/BF01085326. |
[23] |
V. G. Maz'ya and J. Rossmann,
On a problem of Babu$\breve {\rm{s}}$ka (Stable asymptotics of the solution to the Dirichlet problem for elliptic equations of second order in domains with angular points), Math. Nachr., 155 (1992), 199-220.
doi: 10.1002/mana.19921550115. |
[24] |
M. Ming and C. Wang,
Elliptic estimates for Dirichlet-Neumann operator on a corner domain., Asymptotic Analysis, 104 (2017), 103-166.
doi: 10.3233/ASY-171427. |
[25] |
M. Ming and C. Wang, Water waves problem with surface tension in a corner domain Ⅰ: A priori estimates with constrained contact angle, preprint, arXiv: 1709.00180. Google Scholar |
show all references
References:
[1] |
J. Banasiak and G. F. Roach,
On mixed boundary value problems of Dirichlet oblique-derivative type in plane domains with piecewise differentiable boundary, Journal of differential equations, 79 (1989), 111-131.
doi: 10.1016/0022-0396(89)90116-2. |
[2] |
M. Sh. Birman and G. E. Skvortsov, On the quadratic integrability of the highest derivatives of the Dirichlet problem in a domain with piecewis smooth boundary, Izv. Vyssh. Uchebn. Zaved. Mat., 1962 (1962), 11–21 (in Russsian). |
[3] |
M. Borsuk and V. A. Kondrat'ev, Elliptic Boundary Value Problems of Second Order in Piecewise Smooth Domains, North-Holland Mathematical Library, 69. Elsevier Science B.V., Amsterdam, 2006.
doi: 10.1016/S0924-6509(06)80026-7. |
[4] |
M. Costabel and M. Dauge,
General edge asymptotics of solutions of second order elliptic boundary value problems, Ⅰ, Proc. Roy. Soc. Edinburgh Sect. A, 123 (1993), 109-155.
doi: 10.1017/S0308210500021272. |
[5] |
M. Costabel and M. Dauge,
General edge asymptotics of solutions of second order elliptic boundary value problems Ⅱ., Proc. Roy. Soc. Edinburgh Sect. A, 123 (1993), 157-184.
doi: 10.1017/S0308210500021272. |
[6] |
M. Dauge, Elliptic Boundary Value Problems on Corner Domains, Smoothness and Asymptotics of Solutions, Lecture Notes in Mathematics, 1341. Springer-Verlag, Berlin, 1988.
doi: 10.1007/BFb0086682. |
[7] |
M. Dauge, S. Nicaise, M. Bourlard and M. S. Lubuma,
Coefficients des singularités pour des problèmes aux limites elliptiques sur un domaine à points coniques Ⅰ: résultats généraux pour le problème de Dirichlet, Mathematical Modelling and Numerical Analysis, 24 (1990), 27-52.
doi: 10.1051/m2an/1990240100271. |
[8] |
G. I. Eskin, General boundary values problems for equations of principle type in a plane domain with angular points, Uspekhi Mat. Nauk, 18 (1963), 241–242 (in Russian). Google Scholar |
[9] |
P. Grisvard, Elliptic Problems in Non Smooth Domains, Pitman Advanced Publishing Program, Boston-London-Melbourne, 1985. |
[10] |
P. Grisvard, Singularities in Boundary Value Problems, Research notes in applied mathematics, Springer-Verlag, 1992. |
[11] |
V. A. Kondrat'ev, Boundary Value Problems for Elliptic Equations in Conical Regions, , Soviet Math. Dokl., 1963. Google Scholar |
[12] |
V. A. Kondrat'ev,
Boundary value problems for elliptic equations in domains with conical or angular points, Trans. Moscow Math. Soc., 16 (1967), 209-292.
|
[13] |
V. A. Kondart'ev and O. A. Oleinik,
Boundary value problems for partial differential equations in nonsmooth domains, Russian Math. Surveys, 38 (1983), 3-76.
|
[14] |
V. A. Kozlov, V. G. Mazya and J. Rossmann, Elliptic Boundary Value Problems in Domains with Point Singularities, Mathematical Surveys and Monographs, 52, American Mathematical Society, Providence, RI, 1997. |
[15] |
D. Lannes,
Well-posedness of the water-wave equations, Journal of the American Math. Society, 18 (2005), 605-654.
doi: 10.1090/S0894-0347-05-00484-4. |
[16] |
Ya. B. Lopatinskiy, On one type of singular integral equations, Teoret. i Prikl. Mat. (Lvov), 2 (1963), 53–57 (in Russsian). |
[17] |
V. G. Maz'ya and J. Rossmann, Elliptic Equations in Polyhedral Domains, Mathematical Surveys and Monographs, 162, American Mathematical Society, Providence, RI, 2010.
doi: 10.1090/surv/162. |
[18] |
V. G. Maz'ya, The solvability of the Dirichlet problem for a region with a smooth irregular boundary, Vestnik Leningrad. Univ., 19 (1964), 163–165 (in Russian). |
[19] |
V. G. Maz'ya, The behavior near the boundary of the solution of the Dirichlet problem for an elliptic equation of the second order in divergence form, Mat. Zametki, 2 (1967), 209–220 (in Russian). |
[20] |
V. G. Maz'ya and B. A. Plamenevskiy,
On the coefficients in the asymptotics of solutions of elliptic boundary value problems in domains with conical points, Math. Nachr., 76 (1977), 29-60.
doi: 10.1002/mana.19770760103. |
[21] |
V. G. Maz'ya and B. A. Plamenevskiy, $L^p$ estimates of solutions of elliptic boundary value problems in a domains with edges, Trans. Moscow Math. Soc., 1 (1980), 49-97. Google Scholar |
[22] |
V. G. Maz'ya and B. A. Plamenevskiy,
Coefficients in the asymptotics of the solutions of an elliptic boundary value problem in a cone, Journal of Soviet Mathematics, 9 (1978), 750-764.
doi: 10.1007/BF01085326. |
[23] |
V. G. Maz'ya and J. Rossmann,
On a problem of Babu$\breve {\rm{s}}$ka (Stable asymptotics of the solution to the Dirichlet problem for elliptic equations of second order in domains with angular points), Math. Nachr., 155 (1992), 199-220.
doi: 10.1002/mana.19921550115. |
[24] |
M. Ming and C. Wang,
Elliptic estimates for Dirichlet-Neumann operator on a corner domain., Asymptotic Analysis, 104 (2017), 103-166.
doi: 10.3233/ASY-171427. |
[25] |
M. Ming and C. Wang, Water waves problem with surface tension in a corner domain Ⅰ: A priori estimates with constrained contact angle, preprint, arXiv: 1709.00180. Google Scholar |
[1] |
Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249 |
[2] |
Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020340 |
[3] |
Yoshitsugu Kabeya. Eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a large zonal domain in the unit sphere. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3529-3559. doi: 10.3934/dcds.2020040 |
[4] |
Chang-Yeol Jung, Roger Temam. Interaction of boundary layers and corner singularities. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 315-339. doi: 10.3934/dcds.2009.23.315 |
[5] |
Kazunori Matsui. Sharp consistency estimates for a pressure-Poisson problem with Stokes boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1001-1015. doi: 10.3934/dcdss.2020380 |
[6] |
Ole Løseth Elvetun, Bjørn Fredrik Nielsen. A regularization operator for source identification for elliptic PDEs. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021006 |
[7] |
Xiaofeng Ren, David Shoup. The impact of the domain boundary on an inhibitory system: Interior discs and boundary half discs. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3957-3979. doi: 10.3934/dcds.2020048 |
[8] |
Gabrielle Nornberg, Delia Schiera, Boyan Sirakov. A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3857-3881. doi: 10.3934/dcds.2020128 |
[9] |
Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243 |
[10] |
Wenrui Hao, King-Yeung Lam, Yuan Lou. Ecological and evolutionary dynamics in advective environments: Critical domain size and boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 367-400. doi: 10.3934/dcdsb.2020283 |
[11] |
Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034 |
[12] |
Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020391 |
[13] |
Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020436 |
[14] |
Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004 |
[15] |
Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020469 |
[16] |
Cheng Peng, Zhaohui Tang, Weihua Gui, Qing Chen, Jing He. A bidirectional weighted boundary distance algorithm for time series similarity computation based on optimized sliding window size. Journal of Industrial & Management Optimization, 2021, 17 (1) : 205-220. doi: 10.3934/jimo.2019107 |
[17] |
Zi Xu, Siwen Wang, Jinjin Huang. An efficient low complexity algorithm for box-constrained weighted maximin dispersion problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 971-979. doi: 10.3934/jimo.2020007 |
[18] |
Anna Anop, Robert Denk, Aleksandr Murach. Elliptic problems with rough boundary data in generalized Sobolev spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020286 |
[19] |
Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179 |
[20] |
Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]