For the system of polyconvex adiabatic thermoelasticity, we define a notion of dissipative measure-valued solution, which can be considered as the limit of a viscosity approximation. We embed the system into a symmetrizable hyperbolic one in order to derive the relative entropy. Exploiting the weak-stability properties of the transport and stretching identities, we base our analysis in the original variables, instead of the symmetric ones (in which the entropy is convex) and we prove measure-valued weak versus strong uniqueness using the averaged relative entropy inequality.
Citation: |
[1] | J. J. Alibert and G. Bouchitté, Non-uniform integrability and generalized Young measures, J. Convex Analysis, 4 (1997), 129-147. |
[2] | J. M. Ball, A version of the fundamental theorem for Young measures, PDEs and Continuum Models of Phase Transitions (Nice, 1988), 334 (2005), 207-215. doi: 10.1007/BFb0024945. |
[3] | J. M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal., 63 (1976/77), 337-403. doi: 10.1007/BF00279992. |
[4] | J. M. Ball, Some open problems in elasticity, in Geometry, Mechanics, and Dynamics, Springer, New York, (2002), 3–59. doi: 10.1007/0-387-21791-6_1. |
[5] | Y. Brenier, C. De Lellis and L. Székelyhidi Jr., Weak-strong uniqueness for measure-valued solutions, Comm. Math. Physics, 305 (2011), 351-361. doi: 10.1007/s00220-011-1267-0. |
[6] | J. Březina and E. Feireisl, Measure-valued solutions to the complete Euler system, J. Math. Soc. Japan, 70 (2018), 1227–1245, arXiv: 1702.04878. doi: 10.2969/jmsj/77337733. |
[7] | H. B. Callen, Thermodynamics and an Introduction to Thermostatistics, Wiley, New York, 1985. |
[8] | C. Christoforou, M. Galanopoulou and A. E. Tzavaras, A symmetrizable extension of polyconvex thermoelasticity and applications to zero-viscosity limits and weak-strong uniqueness, Comm. Partial Differential Equations, 43 (2018), 1019-1050. doi: 10.1080/03605302.2018.1456551. |
[9] | C. Christoforou and A. E. Tzavaras, Relative entropy for hyperbolic–parabolic systems and application to the constitutive theory of thermoviscoelasticity, Arch. Rational Mech. Anal., 229 (2018), 1-52. doi: 10.1007/s00205-017-1212-2. |
[10] | B. D. Coleman and W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity, Arch. Rational Mech. Anal., 13 (1963), 167-178. doi: 10.1007/BF01262690. |
[11] | C. M. Dafermos, The second law of thermodynamics and stability, Arch. Rational Mech. Anal., 70 (1979), 167-179. doi: 10.1007/BF00250353. |
[12] | C. M. Dafermos, Stability of motions of thermoelastic fluids, Journal of Thermal Stresses, 2 (1979), 127-134. doi: 10.1080/01495737908962394. |
[13] | C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 325. Springer-Verlag, Berlin, 2005. doi: 10.1007/3-540-29089-3. |
[14] | S. Demoulini, D. M. A. Stuart and A. E. Tzavaras, A variational approximation scheme for three-dimensional elastodynamics with polyconvex energy, Arch. Ration. Mech. Anal., 157 (2001), 325-344. doi: 10.1007/s002050100137. |
[15] | S. Demoulini, D. M. A. Stuart and A. E. Tzavaras, Weak-strong uniqueness of dissipative measure-valued solutions for polyconvex elastodynamics, Arch. Ration. Mech. Anal., 205 (2012), 927-961. doi: 10.1007/s00205-012-0523-6. |
[16] | R. J. DiPerna, Uniqueness of solutions to hyperbolic conservation laws, Indiana Univ. Math. J., 28 (1979), 137-188. doi: 10.1512/iumj.1979.28.28011. |
[17] | R. J. DiPerna, Measure-valued solutions to conservation laws, Arch. Rational Mech. Anal., 88 (1985), 223-270. doi: 10.1007/BF00752112. |
[18] | R. J. DiPerna and A. J. Majda, Oscillations and concentrations in weak solutions of the incompressible fluid equations, Commun. Math. Phys., 108 (1987), 667-689. doi: 10.1007/BF01214424. |
[19] | L. C. Evans, Entropy and Partial Differential Equations, UC Berkely, Lecture Notes, Available through: https://math.berkeley.edu/ evans/entropy.and.PDE.pdf. |
[20] | U. S. Fjordholm, R. Käppeli, S. Mishra and E. Tadmor, Construction of approximate entropy measure-valued solutions for hyperbolic systems of conservation laws, Found. Comput. Math., 17 (2017), 763-827. doi: 10.1007/s10208-015-9299-z. |
[21] | K. O. Friedrichs and P. D. Lax, Systems of conservation equations with a convex extension, Proc. Nat. Acad. Sci. U.S.A., 68 (1971), 1686-1688. doi: 10.1073/pnas.68.8.1686. |
[22] | P. Gwiazda, A. Świerczewska-Gwiazda and E. Wiedemann, Weak-strong uniqueness for measure-valued solutions of some compressible fluid models, Nonlinearity, 28 (2015), 3873-3890. doi: 10.1088/0951-7715/28/11/3873. |
[23] | T. Qin, Symmetrizing nonlinear elastodynamic system, J. Elasticity, 50 (1998), 245-252. doi: 10.1023/A:1007488013851. |
[24] | L. Tartar, The compensated compactness method applied to systems of conservation laws, C. Reidel Publishing Col., 111 (1983), 263-285. |
[25] | C. Truesdell and W. Noll, The Non-Linear Field Theories of Mechanics, Second edition. Springer Verlag, Berlin, 1992. doi: 10.1007/978-3-662-13183-1. |