In this paper, we devote to the study of the Bowen's entropy for fixed-point free flows and show that the Bowen entropy of the whole compact space is equal to the topological entropy. To obtain this result, we establish the Brin-Katok's local entropy formula for fixed-point free flows in ergodic case.
Citation: |
[1] | L. M. Abramov, On the entropy of a flow, Dok. Akad. Nauk SSSR, 128 (1959), 873-875. |
[2] | R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc., 153 (1971), 401-414. doi: 10.1090/S0002-9947-1971-0274707-X. |
[3] | R. Bowen, Periodic orbits for hyperbolic flows, Amer. J. Math., 94 (1972), 1-30. doi: 10.2307/2373590. |
[4] | R. Bowen, Topological entropy for noncompact sets, Trans. Amer. Math. Soc., 184 (1973), 125-136. doi: 10.1090/S0002-9947-1973-0338317-X. |
[5] | R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows, Invent. Math., 29 (1975), 181-202. doi: 10.1007/BF01389848. |
[6] | L. Breiman, The individual theorem of information theory, Ann. Math. Statist., 28 (1957), 809-811. doi: 10.1214/aoms/1177706899. |
[7] | M. Brin and A. Katok, On local entropy, Lecture Notes in Math., 1007 (1983), 30-38. doi: 10.1007/BFb0061408. |
[8] | D. Dou, M. Fan and H. Qiu, Topological entropy on subsets for fixed-point free flows, Disc. Contin. Dyn. Syst., 37 (2017), 6319-6331. doi: 10.3934/dcds.2017273. |
[9] | D. Feng and W. Huang, Variational principles for topological entropies of subsets, J. Funct. Anal., 263 (2012), 2228-2254. doi: 10.1016/j.jfa.2012.07.010. |
[10] | B. McMillan, The basic theorems of information theory, Ann. Math. Statist., 24 (1953), 196-219. doi: 10.1214/aoms/1177729028. |
[11] | C. E. Shannon, A mathematical theory of communication, Bell System Tech. J., 27 (1948), 623-656. doi: 10.1002/j.1538-7305.1948.tb01338.x. |
[12] | J. Shen and Y. Zhao, Entropy of a flow on non-compact sets, Open Syst. Inf. Dyn., 19 (2012), 1250015, 10 pp. doi: 10.1142/S1230161212500151. |
[13] | W. Sun, Measure-theoretic entropy for flows, Sci. China Ser. A, 40 (1997), 725-731. doi: 10.1007/BF02878695. |
[14] | W. Sun and E. Vargas, Entropy of flows, revisited, Bol. Soc. Brasil. Mat. (N.S), 30 (1999), 315-333. doi: 10.1007/BF01239009. |
[15] | R. F. Thomas, Entropy of expansive flows, Ergod. Th. Dynam. Sys., 7 (1987), 611-625. doi: 10.1017/S0143385700004235. |
[16] | R. F. Thomas, Topological entropy of fixed-point free flows, Trans. Amer. Math. Soc., 319 (1990), 601-618. doi: 10.1090/S0002-9947-1990-1010414-5. |
[17] | P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79. Springer-Verlag, New York-Berlin, 1982. |
[18] | D. Zheng and E. Chen, Bowen entropy for actions of amenable groups, Israel J. Math., 212 (2016), 895-911. doi: 10.1007/s11856-016-1312-y. |