November  2019, 39(11): 6231-6239. doi: 10.3934/dcds.2019271

Bowen entropy for fixed-point free flows

1. 

School of Mathematical Sciences and Institute of Mathematics, Nanjing Normal University, Nanjing, Jiangsu 210046, China

2. 

School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China

* Corresponding author

Received  September 2018 Revised  May 2019 Published  August 2019

In this paper, we devote to the study of the Bowen's entropy for fixed-point free flows and show that the Bowen entropy of the whole compact space is equal to the topological entropy. To obtain this result, we establish the Brin-Katok's local entropy formula for fixed-point free flows in ergodic case.

Citation: Yong Ji, Ercai Chen, Yunping Wang, Cao Zhao. Bowen entropy for fixed-point free flows. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6231-6239. doi: 10.3934/dcds.2019271
References:
[1]

L. M. Abramov, On the entropy of a flow, Dok. Akad. Nauk SSSR, 128 (1959), 873-875.   Google Scholar

[2]

R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc., 153 (1971), 401-414.  doi: 10.1090/S0002-9947-1971-0274707-X.  Google Scholar

[3]

R. Bowen, Periodic orbits for hyperbolic flows, Amer. J. Math., 94 (1972), 1-30.  doi: 10.2307/2373590.  Google Scholar

[4]

R. Bowen, Topological entropy for noncompact sets, Trans. Amer. Math. Soc., 184 (1973), 125-136.  doi: 10.1090/S0002-9947-1973-0338317-X.  Google Scholar

[5]

R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows, Invent. Math., 29 (1975), 181-202.  doi: 10.1007/BF01389848.  Google Scholar

[6]

L. Breiman, The individual theorem of information theory, Ann. Math. Statist., 28 (1957), 809-811.  doi: 10.1214/aoms/1177706899.  Google Scholar

[7]

M. Brin and A. Katok, On local entropy, Lecture Notes in Math., 1007 (1983), 30-38.  doi: 10.1007/BFb0061408.  Google Scholar

[8]

D. DouM. Fan and H. Qiu, Topological entropy on subsets for fixed-point free flows, Disc. Contin. Dyn. Syst., 37 (2017), 6319-6331.  doi: 10.3934/dcds.2017273.  Google Scholar

[9]

D. Feng and W. Huang, Variational principles for topological entropies of subsets, J. Funct. Anal., 263 (2012), 2228-2254.  doi: 10.1016/j.jfa.2012.07.010.  Google Scholar

[10]

B. McMillan, The basic theorems of information theory, Ann. Math. Statist., 24 (1953), 196-219.  doi: 10.1214/aoms/1177729028.  Google Scholar

[11]

C. E. Shannon, A mathematical theory of communication, Bell System Tech. J., 27 (1948), 623-656.  doi: 10.1002/j.1538-7305.1948.tb01338.x.  Google Scholar

[12]

J. Shen and Y. Zhao, Entropy of a flow on non-compact sets, Open Syst. Inf. Dyn., 19 (2012), 1250015, 10 pp. doi: 10.1142/S1230161212500151.  Google Scholar

[13]

W. Sun, Measure-theoretic entropy for flows, Sci. China Ser. A, 40 (1997), 725-731.  doi: 10.1007/BF02878695.  Google Scholar

[14]

W. Sun and E. Vargas, Entropy of flows, revisited, Bol. Soc. Brasil. Mat. (N.S), 30 (1999), 315-333.  doi: 10.1007/BF01239009.  Google Scholar

[15]

R. F. Thomas, Entropy of expansive flows, Ergod. Th. Dynam. Sys., 7 (1987), 611-625.  doi: 10.1017/S0143385700004235.  Google Scholar

[16]

R. F. Thomas, Topological entropy of fixed-point free flows, Trans. Amer. Math. Soc., 319 (1990), 601-618.  doi: 10.1090/S0002-9947-1990-1010414-5.  Google Scholar

[17]

P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79. Springer-Verlag, New York-Berlin, 1982.  Google Scholar

[18]

D. Zheng and E. Chen, Bowen entropy for actions of amenable groups, Israel J. Math., 212 (2016), 895-911.  doi: 10.1007/s11856-016-1312-y.  Google Scholar

show all references

References:
[1]

L. M. Abramov, On the entropy of a flow, Dok. Akad. Nauk SSSR, 128 (1959), 873-875.   Google Scholar

[2]

R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc., 153 (1971), 401-414.  doi: 10.1090/S0002-9947-1971-0274707-X.  Google Scholar

[3]

R. Bowen, Periodic orbits for hyperbolic flows, Amer. J. Math., 94 (1972), 1-30.  doi: 10.2307/2373590.  Google Scholar

[4]

R. Bowen, Topological entropy for noncompact sets, Trans. Amer. Math. Soc., 184 (1973), 125-136.  doi: 10.1090/S0002-9947-1973-0338317-X.  Google Scholar

[5]

R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows, Invent. Math., 29 (1975), 181-202.  doi: 10.1007/BF01389848.  Google Scholar

[6]

L. Breiman, The individual theorem of information theory, Ann. Math. Statist., 28 (1957), 809-811.  doi: 10.1214/aoms/1177706899.  Google Scholar

[7]

M. Brin and A. Katok, On local entropy, Lecture Notes in Math., 1007 (1983), 30-38.  doi: 10.1007/BFb0061408.  Google Scholar

[8]

D. DouM. Fan and H. Qiu, Topological entropy on subsets for fixed-point free flows, Disc. Contin. Dyn. Syst., 37 (2017), 6319-6331.  doi: 10.3934/dcds.2017273.  Google Scholar

[9]

D. Feng and W. Huang, Variational principles for topological entropies of subsets, J. Funct. Anal., 263 (2012), 2228-2254.  doi: 10.1016/j.jfa.2012.07.010.  Google Scholar

[10]

B. McMillan, The basic theorems of information theory, Ann. Math. Statist., 24 (1953), 196-219.  doi: 10.1214/aoms/1177729028.  Google Scholar

[11]

C. E. Shannon, A mathematical theory of communication, Bell System Tech. J., 27 (1948), 623-656.  doi: 10.1002/j.1538-7305.1948.tb01338.x.  Google Scholar

[12]

J. Shen and Y. Zhao, Entropy of a flow on non-compact sets, Open Syst. Inf. Dyn., 19 (2012), 1250015, 10 pp. doi: 10.1142/S1230161212500151.  Google Scholar

[13]

W. Sun, Measure-theoretic entropy for flows, Sci. China Ser. A, 40 (1997), 725-731.  doi: 10.1007/BF02878695.  Google Scholar

[14]

W. Sun and E. Vargas, Entropy of flows, revisited, Bol. Soc. Brasil. Mat. (N.S), 30 (1999), 315-333.  doi: 10.1007/BF01239009.  Google Scholar

[15]

R. F. Thomas, Entropy of expansive flows, Ergod. Th. Dynam. Sys., 7 (1987), 611-625.  doi: 10.1017/S0143385700004235.  Google Scholar

[16]

R. F. Thomas, Topological entropy of fixed-point free flows, Trans. Amer. Math. Soc., 319 (1990), 601-618.  doi: 10.1090/S0002-9947-1990-1010414-5.  Google Scholar

[17]

P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79. Springer-Verlag, New York-Berlin, 1982.  Google Scholar

[18]

D. Zheng and E. Chen, Bowen entropy for actions of amenable groups, Israel J. Math., 212 (2016), 895-911.  doi: 10.1007/s11856-016-1312-y.  Google Scholar

[1]

Dou Dou, Meng Fan, Hua Qiu. Topological entropy on subsets for fixed-point free flows. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6319-6331. doi: 10.3934/dcds.2017273

[2]

Xiaojun Huang, Jinsong Liu, Changrong Zhu. The Katok's entropy formula for amenable group actions. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4467-4482. doi: 10.3934/dcds.2018195

[3]

L. Bakker. The Katok-Spatzier conjecture, generalized symmetries, and equilibrium-free flows. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1183-1200. doi: 10.3934/cpaa.2013.12.1183

[4]

Michał Misiurewicz. On Bowen's definition of topological entropy. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 827-833. doi: 10.3934/dcds.2004.10.827

[5]

Jorge Groisman. Expansive and fixed point free homeomorphisms of the plane. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1709-1721. doi: 10.3934/dcds.2012.32.1709

[6]

Wenxiang Sun, Xueting Tian. Dominated splitting and Pesin's entropy formula. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1421-1434. doi: 10.3934/dcds.2012.32.1421

[7]

Yujun Ju, Dongkui Ma, Yupan Wang. Topological entropy of free semigroup actions for noncompact sets. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 995-1017. doi: 10.3934/dcds.2019041

[8]

Jan Philipp Schröder. Ergodicity and topological entropy of geodesic flows on surfaces. Journal of Modern Dynamics, 2015, 9: 147-167. doi: 10.3934/jmd.2015.9.147

[9]

Cleon S. Barroso. The approximate fixed point property in Hausdorff topological vector spaces and applications. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 467-479. doi: 10.3934/dcds.2009.25.467

[10]

Zhiming Li, Lin Shu. The metric entropy of random dynamical systems in a Hilbert space: Characterization of invariant measures satisfying Pesin's entropy formula. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4123-4155. doi: 10.3934/dcds.2013.33.4123

[11]

Gamaliel Blé, Carlos Cabrera. A generalization of Douady's formula. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6183-6188. doi: 10.3934/dcds.2017267

[12]

Marcelo R. R. Alves. Positive topological entropy for Reeb flows on 3-dimensional Anosov contact manifolds. Journal of Modern Dynamics, 2016, 10: 497-509. doi: 10.3934/jmd.2016.10.497

[13]

Xiaomin Zhou. A formula of conditional entropy and some applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 4063-4075. doi: 10.3934/dcds.2016.36.4063

[14]

Katrin Gelfert. Lower bounds for the topological entropy. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 555-565. doi: 10.3934/dcds.2005.12.555

[15]

Jaume Llibre. Brief survey on the topological entropy. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3363-3374. doi: 10.3934/dcdsb.2015.20.3363

[16]

Nicholas Long. Fixed point shifts of inert involutions. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1297-1317. doi: 10.3934/dcds.2009.25.1297

[17]

Dongkui Ma, Min Wu. Topological pressure and topological entropy of a semigroup of maps. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 545-556. doi: 10.3934/dcds.2011.31.545

[18]

Piotr Oprocha, Paweł Potorski. Topological mixing, knot points and bounds of topological entropy. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3547-3564. doi: 10.3934/dcdsb.2015.20.3547

[19]

Boris Hasselblatt, Zbigniew Nitecki, James Propp. Topological entropy for nonuniformly continuous maps. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 201-213. doi: 10.3934/dcds.2008.22.201

[20]

Min Qian, Jian-Sheng Xie. Entropy formula for endomorphisms: Relations between entropy, exponents and dimension. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 367-392. doi: 10.3934/dcds.2008.21.367

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (83)
  • HTML views (99)
  • Cited by (0)

Other articles
by authors

[Back to Top]