November  2019, 39(11): 6231-6239. doi: 10.3934/dcds.2019271

Bowen entropy for fixed-point free flows

1. 

School of Mathematical Sciences and Institute of Mathematics, Nanjing Normal University, Nanjing, Jiangsu 210046, China

2. 

School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China

* Corresponding author

Received  September 2018 Revised  May 2019 Published  August 2019

In this paper, we devote to the study of the Bowen's entropy for fixed-point free flows and show that the Bowen entropy of the whole compact space is equal to the topological entropy. To obtain this result, we establish the Brin-Katok's local entropy formula for fixed-point free flows in ergodic case.

Citation: Yong Ji, Ercai Chen, Yunping Wang, Cao Zhao. Bowen entropy for fixed-point free flows. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6231-6239. doi: 10.3934/dcds.2019271
References:
[1]

L. M. Abramov, On the entropy of a flow, Dok. Akad. Nauk SSSR, 128 (1959), 873-875.   Google Scholar

[2]

R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc., 153 (1971), 401-414.  doi: 10.1090/S0002-9947-1971-0274707-X.  Google Scholar

[3]

R. Bowen, Periodic orbits for hyperbolic flows, Amer. J. Math., 94 (1972), 1-30.  doi: 10.2307/2373590.  Google Scholar

[4]

R. Bowen, Topological entropy for noncompact sets, Trans. Amer. Math. Soc., 184 (1973), 125-136.  doi: 10.1090/S0002-9947-1973-0338317-X.  Google Scholar

[5]

R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows, Invent. Math., 29 (1975), 181-202.  doi: 10.1007/BF01389848.  Google Scholar

[6]

L. Breiman, The individual theorem of information theory, Ann. Math. Statist., 28 (1957), 809-811.  doi: 10.1214/aoms/1177706899.  Google Scholar

[7]

M. Brin and A. Katok, On local entropy, Lecture Notes in Math., 1007 (1983), 30-38.  doi: 10.1007/BFb0061408.  Google Scholar

[8]

D. DouM. Fan and H. Qiu, Topological entropy on subsets for fixed-point free flows, Disc. Contin. Dyn. Syst., 37 (2017), 6319-6331.  doi: 10.3934/dcds.2017273.  Google Scholar

[9]

D. Feng and W. Huang, Variational principles for topological entropies of subsets, J. Funct. Anal., 263 (2012), 2228-2254.  doi: 10.1016/j.jfa.2012.07.010.  Google Scholar

[10]

B. McMillan, The basic theorems of information theory, Ann. Math. Statist., 24 (1953), 196-219.  doi: 10.1214/aoms/1177729028.  Google Scholar

[11]

C. E. Shannon, A mathematical theory of communication, Bell System Tech. J., 27 (1948), 623-656.  doi: 10.1002/j.1538-7305.1948.tb01338.x.  Google Scholar

[12]

J. Shen and Y. Zhao, Entropy of a flow on non-compact sets, Open Syst. Inf. Dyn., 19 (2012), 1250015, 10 pp. doi: 10.1142/S1230161212500151.  Google Scholar

[13]

W. Sun, Measure-theoretic entropy for flows, Sci. China Ser. A, 40 (1997), 725-731.  doi: 10.1007/BF02878695.  Google Scholar

[14]

W. Sun and E. Vargas, Entropy of flows, revisited, Bol. Soc. Brasil. Mat. (N.S), 30 (1999), 315-333.  doi: 10.1007/BF01239009.  Google Scholar

[15]

R. F. Thomas, Entropy of expansive flows, Ergod. Th. Dynam. Sys., 7 (1987), 611-625.  doi: 10.1017/S0143385700004235.  Google Scholar

[16]

R. F. Thomas, Topological entropy of fixed-point free flows, Trans. Amer. Math. Soc., 319 (1990), 601-618.  doi: 10.1090/S0002-9947-1990-1010414-5.  Google Scholar

[17]

P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79. Springer-Verlag, New York-Berlin, 1982.  Google Scholar

[18]

D. Zheng and E. Chen, Bowen entropy for actions of amenable groups, Israel J. Math., 212 (2016), 895-911.  doi: 10.1007/s11856-016-1312-y.  Google Scholar

show all references

References:
[1]

L. M. Abramov, On the entropy of a flow, Dok. Akad. Nauk SSSR, 128 (1959), 873-875.   Google Scholar

[2]

R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc., 153 (1971), 401-414.  doi: 10.1090/S0002-9947-1971-0274707-X.  Google Scholar

[3]

R. Bowen, Periodic orbits for hyperbolic flows, Amer. J. Math., 94 (1972), 1-30.  doi: 10.2307/2373590.  Google Scholar

[4]

R. Bowen, Topological entropy for noncompact sets, Trans. Amer. Math. Soc., 184 (1973), 125-136.  doi: 10.1090/S0002-9947-1973-0338317-X.  Google Scholar

[5]

R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows, Invent. Math., 29 (1975), 181-202.  doi: 10.1007/BF01389848.  Google Scholar

[6]

L. Breiman, The individual theorem of information theory, Ann. Math. Statist., 28 (1957), 809-811.  doi: 10.1214/aoms/1177706899.  Google Scholar

[7]

M. Brin and A. Katok, On local entropy, Lecture Notes in Math., 1007 (1983), 30-38.  doi: 10.1007/BFb0061408.  Google Scholar

[8]

D. DouM. Fan and H. Qiu, Topological entropy on subsets for fixed-point free flows, Disc. Contin. Dyn. Syst., 37 (2017), 6319-6331.  doi: 10.3934/dcds.2017273.  Google Scholar

[9]

D. Feng and W. Huang, Variational principles for topological entropies of subsets, J. Funct. Anal., 263 (2012), 2228-2254.  doi: 10.1016/j.jfa.2012.07.010.  Google Scholar

[10]

B. McMillan, The basic theorems of information theory, Ann. Math. Statist., 24 (1953), 196-219.  doi: 10.1214/aoms/1177729028.  Google Scholar

[11]

C. E. Shannon, A mathematical theory of communication, Bell System Tech. J., 27 (1948), 623-656.  doi: 10.1002/j.1538-7305.1948.tb01338.x.  Google Scholar

[12]

J. Shen and Y. Zhao, Entropy of a flow on non-compact sets, Open Syst. Inf. Dyn., 19 (2012), 1250015, 10 pp. doi: 10.1142/S1230161212500151.  Google Scholar

[13]

W. Sun, Measure-theoretic entropy for flows, Sci. China Ser. A, 40 (1997), 725-731.  doi: 10.1007/BF02878695.  Google Scholar

[14]

W. Sun and E. Vargas, Entropy of flows, revisited, Bol. Soc. Brasil. Mat. (N.S), 30 (1999), 315-333.  doi: 10.1007/BF01239009.  Google Scholar

[15]

R. F. Thomas, Entropy of expansive flows, Ergod. Th. Dynam. Sys., 7 (1987), 611-625.  doi: 10.1017/S0143385700004235.  Google Scholar

[16]

R. F. Thomas, Topological entropy of fixed-point free flows, Trans. Amer. Math. Soc., 319 (1990), 601-618.  doi: 10.1090/S0002-9947-1990-1010414-5.  Google Scholar

[17]

P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79. Springer-Verlag, New York-Berlin, 1982.  Google Scholar

[18]

D. Zheng and E. Chen, Bowen entropy for actions of amenable groups, Israel J. Math., 212 (2016), 895-911.  doi: 10.1007/s11856-016-1312-y.  Google Scholar

[1]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[2]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[3]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020350

[4]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[5]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[6]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[7]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

[8]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (150)
  • HTML views (139)
  • Cited by (1)

Other articles
by authors

[Back to Top]