
-
Previous Article
The vorticity equation on a rotating sphere and the shallow fluid approximation
- DCDS Home
- This Issue
-
Next Article
Bowen entropy for fixed-point free flows
Escape dynamics for interval maps
1. | Centro de Investigação em Matemática e Aplicações, Dep. of Mathematics, Univ. de Évora, R. Romão Ramalho, 59, 7000-671 Évora, Portugal |
2. | Dep. of Mathematics, CAMGSD, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal |
We study the structure of the escape orbits for a certain class of interval maps. This structure is encoded in the escape transition matrix $ \widehat{A}_f $ of an interval map $ f $, extending the traditional matrix $ A_f $ which considers the transition among the Markov subintervals. We show that the escape transition matrix is a topological conjugacy invariant. We then characterize the $ 0 $–$ 1 $ matrices that can be fabricated as escape transition matrices of Markov interval maps $ f $ with escape sets. This shows the richness of this class of interval maps.
References:
[1] |
R. Alcaraz Barrera,
Topological and ergodic properties of symmetric sub-shifts, Discrete Contin. Dyn. Syst., 34 (2014), 4459-4486.
doi: 10.3934/dcds.2014.34.4459. |
[2] |
A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Classics in Applied Mathematics, 9. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1994.
doi: 10.1137/1.9781611971262. |
[3] |
S. Bundfuss, T. Krüger and S. Troubetzkoy,
Topological and symbolic dynamics for hyperbolic systems with holes, Ergodic Theory Dynam. Systems, 31 (2011), 1305-1323.
doi: 10.1017/S0143385710000556. |
[4] |
L. Clark,
The β-transformation with a hole, Discrete Contin. Dyn. Syst., 36 (2016), 1249-1269.
doi: 10.3934/dcds.2016.36.1249. |
[5] |
C. Correia Ramos, N. Martins and P. R. Pinto,
Interval maps from Cuntz-Krieger algebras, J. Math. Anal. Appl., 374 (2011), 347-354.
doi: 10.1016/j.jmaa.2010.09.045. |
[6] |
C. Correia Ramos, N. Martins and P. R. Pinto,
Toeplitz algebras arising from escape points of interval maps, Banach J. Math. Anal., 11 (2017), 536-553.
doi: 10.1215/17358787-2017-0005. |
[7] |
C. Correia Ramos, N. Martins and P. R. Pinto,
On graph algebras from interval maps, Ann. Funct. Anal., 10 (2019), 203-217.
doi: 10.1215/20088752-2018-0019. |
[8] |
B. Derrida, A. Gervois and Y. Pomeau,
Iteration of endomorphisms on the real axis and representations of numbers, Ann. Inst. H. Poincaré Sect. A (N.S.), 29 (1978), 305-356.
|
[9] |
K. Falconer, Techniques in Fractal Geometry, John Wiley and Sons, Ltd., Chichester, 1997. |
[10] |
J. P. Lampreia, A. Rica da Silva and J. Sousa Ramos,
Construction of 0–1 matrices associated to period-doubling processes, Stochastica, 9 (1985), 165-178.
|
[11] |
J. P. Lampreia and J. Sousa Ramos,
Symbolic dynamics of bimodal maps, Portugal. Math., 54 (1997), 1-18.
|
[12] |
D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511626302.![]() ![]() ![]() |
[13] |
N. Sidorov,
Arithmetic dynamics, Cambridge Univ. Press, Cambridge, 310 (2003), 145-189.
doi: 10.1017/CBO9780511546716.010. |
show all references
References:
[1] |
R. Alcaraz Barrera,
Topological and ergodic properties of symmetric sub-shifts, Discrete Contin. Dyn. Syst., 34 (2014), 4459-4486.
doi: 10.3934/dcds.2014.34.4459. |
[2] |
A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Classics in Applied Mathematics, 9. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1994.
doi: 10.1137/1.9781611971262. |
[3] |
S. Bundfuss, T. Krüger and S. Troubetzkoy,
Topological and symbolic dynamics for hyperbolic systems with holes, Ergodic Theory Dynam. Systems, 31 (2011), 1305-1323.
doi: 10.1017/S0143385710000556. |
[4] |
L. Clark,
The β-transformation with a hole, Discrete Contin. Dyn. Syst., 36 (2016), 1249-1269.
doi: 10.3934/dcds.2016.36.1249. |
[5] |
C. Correia Ramos, N. Martins and P. R. Pinto,
Interval maps from Cuntz-Krieger algebras, J. Math. Anal. Appl., 374 (2011), 347-354.
doi: 10.1016/j.jmaa.2010.09.045. |
[6] |
C. Correia Ramos, N. Martins and P. R. Pinto,
Toeplitz algebras arising from escape points of interval maps, Banach J. Math. Anal., 11 (2017), 536-553.
doi: 10.1215/17358787-2017-0005. |
[7] |
C. Correia Ramos, N. Martins and P. R. Pinto,
On graph algebras from interval maps, Ann. Funct. Anal., 10 (2019), 203-217.
doi: 10.1215/20088752-2018-0019. |
[8] |
B. Derrida, A. Gervois and Y. Pomeau,
Iteration of endomorphisms on the real axis and representations of numbers, Ann. Inst. H. Poincaré Sect. A (N.S.), 29 (1978), 305-356.
|
[9] |
K. Falconer, Techniques in Fractal Geometry, John Wiley and Sons, Ltd., Chichester, 1997. |
[10] |
J. P. Lampreia, A. Rica da Silva and J. Sousa Ramos,
Construction of 0–1 matrices associated to period-doubling processes, Stochastica, 9 (1985), 165-178.
|
[11] |
J. P. Lampreia and J. Sousa Ramos,
Symbolic dynamics of bimodal maps, Portugal. Math., 54 (1997), 1-18.
|
[12] |
D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511626302.![]() ![]() ![]() |
[13] |
N. Sidorov,
Arithmetic dynamics, Cambridge Univ. Press, Cambridge, 310 (2003), 145-189.
doi: 10.1017/CBO9780511546716.010. |




[1] |
Gary Froyland, Ognjen Stancevic. Escape rates and Perron-Frobenius operators: Open and closed dynamical systems. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 457-472. doi: 10.3934/dcdsb.2010.14.457 |
[2] |
David Burguet. Examples of $\mathcal{C}^r$ interval map with large symbolic extension entropy. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 873-899. doi: 10.3934/dcds.2010.26.873 |
[3] |
Anushaya Mohapatra, William Ott. Memory loss for nonequilibrium open dynamical systems. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3747-3759. doi: 10.3934/dcds.2014.34.3747 |
[4] |
David Ralston. Heaviness in symbolic dynamics: Substitution and Sturmian systems. Discrete and Continuous Dynamical Systems - S, 2009, 2 (2) : 287-300. doi: 10.3934/dcdss.2009.2.287 |
[5] |
Răzvan M. Tudoran. Dynamical systems with a prescribed globally bp-attracting set and applications to conservative dynamics. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 3013-3030. doi: 10.3934/dcds.2020159 |
[6] |
Wen-Guei Hu, Song-Sun Lin. On spatial entropy of multi-dimensional symbolic dynamical systems. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3705-3717. doi: 10.3934/dcds.2016.36.3705 |
[7] |
H. M. Hastings, S. Silberger, M. T. Weiss, Y. Wu. A twisted tensor product on symbolic dynamical systems and the Ashley's problem. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 549-558. doi: 10.3934/dcds.2003.9.549 |
[8] |
Gary Froyland, Philip K. Pollett, Robyn M. Stuart. A closing scheme for finding almost-invariant sets in open dynamical systems. Journal of Computational Dynamics, 2014, 1 (1) : 135-162. doi: 10.3934/jcd.2014.1.135 |
[9] |
Alexander Kemarsky, Frédéric Paulin, Uri Shapira. Escape of mass in homogeneous dynamics in positive characteristic. Journal of Modern Dynamics, 2017, 11: 369-407. doi: 10.3934/jmd.2017015 |
[10] |
Steven T. Piantadosi. Symbolic dynamics on free groups. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 725-738. doi: 10.3934/dcds.2008.20.725 |
[11] |
Giovanni Russo, Fabian Wirth. Matrix measures, stability and contraction theory for dynamical systems on time scales. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3345-3374. doi: 10.3934/dcdsb.2021188 |
[12] |
Maya Briani, Benedetto Piccoli. Fluvial to torrential phase transition in open canals. Networks and Heterogeneous Media, 2018, 13 (4) : 663-690. doi: 10.3934/nhm.2018030 |
[13] |
Marta Štefánková. Inheriting of chaos in uniformly convergent nonautonomous dynamical systems on the interval. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3435-3443. doi: 10.3934/dcds.2016.36.3435 |
[14] |
David Burguet, Todd Fisher. Symbolic extensionsfor partially hyperbolic dynamical systems with 2-dimensional center bundle. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2253-2270. doi: 10.3934/dcds.2013.33.2253 |
[15] |
James W. Cannon, Mark H. Meilstrup, Andreas Zastrow. The period set of a map from the Cantor set to itself. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2667-2679. doi: 10.3934/dcds.2013.33.2667 |
[16] |
Tian Ma, Shouhong Wang. Cahn-Hilliard equations and phase transition dynamics for binary systems. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 741-784. doi: 10.3934/dcdsb.2009.11.741 |
[17] |
Alexey Glutsyuk, Yury Kudryashov. No planar billiard possesses an open set of quadrilateral trajectories. Journal of Modern Dynamics, 2012, 6 (3) : 287-326. doi: 10.3934/jmd.2012.6.287 |
[18] |
Jim Wiseman. Symbolic dynamics from signed matrices. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 621-638. doi: 10.3934/dcds.2004.11.621 |
[19] |
George Osipenko, Stephen Campbell. Applied symbolic dynamics: attractors and filtrations. Discrete and Continuous Dynamical Systems, 1999, 5 (1) : 43-60. doi: 10.3934/dcds.1999.5.43 |
[20] |
Michael Hochman. A note on universality in multidimensional symbolic dynamics. Discrete and Continuous Dynamical Systems - S, 2009, 2 (2) : 301-314. doi: 10.3934/dcdss.2009.2.301 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]