• Previous Article
    Scattering for a mass critical NLS system below the ground state with and without mass-resonance condition
  • DCDS Home
  • This Issue
  • Next Article
    The vorticity equation on a rotating sphere and the shallow fluid approximation
November  2019, 39(11): 6277-6298. doi: 10.3934/dcds.2019274

Thermodynamic formalism for topological Markov chains on standard Borel spaces

1. 

Departamento de Matemática, Universidade de Brasília, 70910-900, Brasília, Brazil

2. 

Departamento de Matemática, Universidade Federal do Rio de Janeiro, 21941-909, Rio de Janeiro (RJ), Brazil

* Corresponding author: L. Cioletti

Received  October 2018 Revised  May 2019 Published  August 2019

Fund Project: M. Stadlbauer is supported by FAPERJ and CNPq and L. Cioletti is supported by CNPq

We develop a Thermodynamic Formalism for bounded continuous potentials defined on the sequence space $ X\equiv E^{\mathbb{N}} $, where $ E $ is a general standard Borel space. In particular, we introduce meaningful concepts of entropy and pressure for shifts acting on $ X $ and obtain the existence of equilibrium states as finitely additive probability measures for any bounded continuous potential. Furthermore, we establish convexity and other structural properties of the set of equilibrium states, prove a version of the Perron-Frobenius-Ruelle theorem under additional assumptions on the regularity of the potential and show that the Yosida-Hewitt decomposition of these equilibrium states does not have a purely finite additive part.

We then apply our results to the construction of invariant measures of time-homogeneous Markov chains taking values on a general Borel standard space and obtain exponential asymptotic stability for a class of Markov operators. We also construct conformal measures for an infinite collection of interacting random paths which are associated to a potential depending on infinitely many coordinates. Under an additional differentiability hypothesis, we show how this process is related after a proper scaling limit to a certain infinite-dimensional diffusion.

Citation: L. Cioletti, E. Silva, M. Stadlbauer. Thermodynamic formalism for topological Markov chains on standard Borel spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6277-6298. doi: 10.3934/dcds.2019274
References:
[1]

D. AguiarL. Cioletti and R. Ruviaro, A variational principle for the specific entropy for symbolic systems with uncountable alphabets, Mathematische Nachrichten, 291 (2018), 2506-2515.  doi: 10.1002/mana.201700229.  Google Scholar

[2]

C. D. Aliprantis and K. C. Border, Infinite Dimensional Analysis, A Hitchhiker's Guide, Third edition, Springer, Berlin, 2006.  Google Scholar

[3]

L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Second edition, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008.  Google Scholar

[4]

V. Baladi, Positive Transfer Operators and Decay of Correlations, Advanced Series in Nonlinear Dynamics, 16. World Scientific Publishing Co., Inc., River Edge, NJ, 2000. doi: 10.1142/9789812813633.  Google Scholar

[5]

A. T. BaravieraL. CiolettiA. O. LopesJ. Mohr and R. R. Souza, On the general one-dimensional $XY$ model: Positive and zero temperature, selection and non-selection, Rev. Math. Phys., 23 (2011), 1063-1113.  doi: 10.1142/S0129055X11004527.  Google Scholar

[6]

S. Berghout, R. Fernández and E. Verbitskiy, On the relation between gibbs and $g$-measures, Ergodic Theory and Dynamical Systems, (2018), 1–26. doi: 10.1017/etds.2018.13.  Google Scholar

[7]

M. Bessa and M. Stadlbauer, On the Lyapunov spectrum of relative transfer operators, Stoch. Dyn., 16 (2016), 1650024, 25 pp. doi: 10.1142/S0219493716500246.  Google Scholar

[8]

T. Bodineau and B. Helffer, The log-Sobolev inequality for unbounded spin systems, J. Funct. Anal., 166 (1999), 168-178.  doi: 10.1006/jfan.1999.3419.  Google Scholar

[9]

V. I. Bogachev and A. V. Kolesnikov, The Monge-Kantorovich problem: Achievements, connections, and perspectives, Russian Mathematical Surveys, 67 (2012), 785-890.  doi: 10.1070/rm2012v067n05abeh004808.  Google Scholar

[10]

F. Bolley, Separability and completeness for the Wasserstein distance, in Séminaire de Probabilités XLI, Lecture Notes in Math., Springer, Berlin, 1934 (2008), 371–377. doi: 10.1007/978-3-540-77913-1_17.  Google Scholar

[11]

R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Second revised edition. With a preface by David Ruelle, Edited by Jean-René Chazottes. Lecture Notes in Mathematics, 470. Springer-Verlag, Berlin, 2008.  Google Scholar

[12]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011.  Google Scholar

[13]

J. Buzzi and O. Sarig, Uniqueness of equilibrium measures for countable Markov shifts and multidimensional piecewise expanding maps, Ergodic Theory Dynam. Systems, 23 (2003), 1383-1400.  doi: 10.1017/S0143385703000087.  Google Scholar

[14]

M. CassandroE. OlivieriA. Pellegrinotti and E. Presutti, Existence and uniqueness of DLR measures for unbounded spin systems, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 41 (1977/78), 313-334.  doi: 10.1007/BF00533602.  Google Scholar

[15]

L. Cioletti, A. C. D. van Enter and R. Ruviaro, The double transpose of the ruelle operator, e-print, arXiv: 1710.03841, (2017), 1–19. Google Scholar

[16]

L. Cioletti and A. O. Lopes, Ruelle operator for continuous potentials and DLR-Gibbs measures, Preprint, arXiv: 1608.03881, 2016. Google Scholar

[17]

L. Cioletti and A. O. Lopes, Interactions, specifications, DLR probabilities and the Ruelle operator in the one-dimensional lattice, Discrete Contin. Dyn. Syst., 37 (2017), 6139-6152.  doi: 10.3934/dcds.2017264.  Google Scholar

[18]

L. Cioletti and E. A. Silva, Spectral properties of the Ruelle operator on the Walters class over compact spaces, Nonlinearity, 29 (2016), 2253-2278.  doi: 10.1088/0951-7715/29/8/2253.  Google Scholar

[19]

V. Cyr and O. Sarig, Spectral gap and transience for Ruelle operators on countable Markov shifts, Comm. Math. Phys., 292 (2009), 637-666.  doi: 10.1007/s00220-009-0891-4.  Google Scholar

[20]

R. L. Dobrushin and E. A. Pecherski, A criterion of the uniqueness of Gibbsian fields in the noncompact case, In Probability Theory and Mathematical Statistics (Tbilisi, 1982), Lecture Notes in Math., Springer, Berlin, 1021 (1983), 97–110. doi: 10.1007/BFb0072907.  Google Scholar

[21]

N. Dunford and J. T. Schwartz, Linear Operators. I. General Theory, With the assistance of W. G. Bade and R. G. Bartle. Pure and Applied Mathematics, Vol. 7. Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958.  Google Scholar

[22]

T. Eisner, B. Farkas, M. Haase and R. Nagel, Operator Theoretic Aspects of Ergodic Theory, Graduate Texts in Mathematics, 272. Springer, Cham, 2015. doi: 10.1007/978-3-319-16898-2.  Google Scholar

[23]

A. C. D. van EnterR. Fernández and A. D. Sokal, Regularity properties and pathologies of position-space renormalization-group transformations: scope and limitations of Gibbsian theory, J. Statist. Phys., 72 (1993), 879-1167.  doi: 10.1007/BF01048183.  Google Scholar

[24]

R. FernándezS. Gallo and G. Maillard, Regular $g$-measures are not always Gibbsian, Electron. Commun. Probab., 16 (2011), 732-740.  doi: 10.1214/ECP.v16-1681.  Google Scholar

[25]

J. Fritz, Gradient dynamics of infinite point systems, Ann. Probab., 15 (1987), 478-514.  doi: 10.1214/aop/1176992156.  Google Scholar

[26]

J. Fröhlich and B. Zegarliński, The phase transition in the discrete Gaussian chain with $1/r^2$ interaction energy, J. Statist. Phys., 63 (1991), 455-485.  doi: 10.1007/BF01029195.  Google Scholar

[27]

H.-O. Georgii, Gibbs Measures and Phase Transitions, Second edition, De Gruyter Studies in Mathematics, 9. Walter de Gruyter & Co., Berlin, 2011. doi: 10.1515/9783110250329.  Google Scholar

[28]

J. Glueck., Existence of a separating affine functional, MathOverflow. https://mathoverflow.net/q/302479. Google Scholar

[29]

H. Hennion and L. Hervé, Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-Compactness, Lecture Notes in Mathematics, 1766. Springer-Verlag, Berlin, 2001. doi: 10.1007/b87874.  Google Scholar

[30]

R. B. Israel and R. R. Phelps, Some convexity questions arising in statistical mechanics, Math. Scand., 54 (1984), 133-156.  doi: 10.7146/math.scand.a-12048.  Google Scholar

[31]

O. Jenkinson, Every ergodic measure is uniquely maximizing, Discrete Contin. Dyn. Syst., 16 (2006), 383-392.  doi: 10.3934/dcds.2006.16.383.  Google Scholar

[32]

C. Kardaras., Finitely additive probabilities and the fundamental theorem of asset pricing, in Contemporary Quantitative Finance, Springer, Berlin, (2010), 19–34. doi: 10.1007/978-3-642-03479-4_2.  Google Scholar

[33]

J. D. Knowles, Measures on topological spaces, Proc. London Math. Soc., 17 (1967), 139-156.  doi: 10.1112/plms/s3-17.1.139.  Google Scholar

[34]

Y. KondratievY. Kozitsky and T. Pasurek, Gibbs measures of disordered lattice systems with unbounded spins, Markov Process. Related Fields, 18 (2012), 553-582.   Google Scholar

[35]

R. Lang, Unendlich-dimensionale Wienerprozesse mit Wechselwirkung. Ⅰ. Existenz, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 38 (1977), 55-72.  doi: 10.1007/BF00534170.  Google Scholar

[36]

R. Lang, Unendlich-dimensionale Wienerprozesse mit Wechselwirkung. Ⅱ. Die reversiblen Masse sind kanonische Gibbs-Masse, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 39 (1977), 277-299.  doi: 10.1007/BF01877496.  Google Scholar

[37]

T. M. Liggett, Interacting Particle Systems, Reprint of the 1985 original, Classics in Mathematics, Springer-Verlag, Berlin, 2005. doi: 10.1007/b138374.  Google Scholar

[38]

J. L. Lebowitz and E. Presutti, Statistical mechanics of systems of unbounded spings, Comm. Math. Phys., 50 (1976), 195-218.  doi: 10.1007/BF01609401.  Google Scholar

[39]

T. Leblé and S. Serfaty, Large deviation principle for empirical fields of log and Riesz gases, Invent. Math., 210 (2017), 645-757.  doi: 10.1007/s00222-017-0738-0.  Google Scholar

[40]

A. O. LopesJ. K. MengueJ. Mohr and R. R. Souza, Entropy and variational principle for one-dimensional lattice systems with a general a priori probability: Positive and zero temperature, Ergodic Theory Dynam. Systems, 35 (2015), 1925-1961.  doi: 10.1017/etds.2014.15.  Google Scholar

[41]

R. D. Mauldin and M. Urbański, Conformal iterated function systems with applications to the geometry of continued fractions, Trans. Am. Math. Soc., 351 (1999), 4995-5025.  doi: 10.1090/S0002-9947-99-02268-0.  Google Scholar

[42]

R. D. Mauldin and M. Urbański, Gibbs states on the symbolic space over an infinite alphabet, Israel J. Math., 125 (2001), 93-130.  doi: 10.1007/BF02773377.  Google Scholar

[43] R. D. Mauldin and M. Urbański, Graph Directed Markov Systems, Geometry and dynamics of limit sets, Cambridge Tracts in Mathematics, 148. Cambridge University Press, Cambridge, 2003.  doi: 10.1017/CBO9780511543050.  Google Scholar
[44]

P. Meyer-Nieberg, Banach Lattices, Universitext, Springer-Verlag, Berlin, 1991. doi: 10.1007/978-3-642-76724-1.  Google Scholar

[45]

S. Meyn and R. L. Tweedie, Markov Chains and Stochastic Stability, Second edition, With a prologue by Peter W. Glynn, Cambridge University Press, Cambridge, 2009. doi: 10.1017/CBO9780511626630.  Google Scholar

[46]

H. Osada, Interacting Brownian motions in infinite dimensions with logarithmic interaction potentials, Ann. Probab., 41 (2013), 1-49.  doi: 10.1214/11-AOP736.  Google Scholar

[47]

W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque, (1990), 268 pp.  Google Scholar

[48]

K. R. Parthasarathy, Probability Measures on Metric Spaces, Reprint of the 1967 original, AMS Chelsea Publishing, Providence, RI, 2005. doi: 10.1090/chel/352.  Google Scholar

[49]

S. T. Rachev, Probability Metrics and the Stability of Stochastic Models, Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics, John Wiley & Sons, Ltd., Chichester, 1991.  Google Scholar

[50]

D. Ruelle, Statistical mechanics of a one-dimensional lattice gas, Comm. Math. Phys., 9 (1968), 267-278.  doi: 10.1007/BF01654281.  Google Scholar

[51]

D. Ruelle, Thermodynamic Formalism, The mathematical structures of equilibrium statistical mechanics, Second edition, Cambridge Mathematical Library. Cambridge University Press, Cambridge, 2004. doi: 10.1017/CBO9780511617546.  Google Scholar

[52]

O. M. Sarig, Thermodynamic formalism for countable Markov shifts, Ergodic Theory Dynam. Systems, 19 (1999), 1565-1593.  doi: 10.1017/S0143385799146820.  Google Scholar

[53]

O. M. Sarig, Phase transitions for countable Markov shifts, Comm. Math. Phys., 217 (2001), 555-577.  doi: 10.1007/s002200100367.  Google Scholar

[54]

O. M. Sarig, Thermodynamic formalism for null recurrent potentials, Israel J. Math., 121 (2001), 285-311.  doi: 10.1007/BF02802508.  Google Scholar

[55]

O. M. Sarig, Existence of Gibbs measures for countable Markov shifts, Proc. Amer. Math. Soc., 131 (2003), 1751-1758.  doi: 10.1090/S0002-9939-03-06927-2.  Google Scholar

[56]

O. M. Sarig, Lecture notes on thermodynamic formalism for topological markov shifts, Penn State, 2009. Google Scholar

[57]

O. M. Sarig, Symbolic dynamics for surface diffeomorphisms with positive entropy, J. Amer. Math. Soc., 26 (2013), 341-426.  doi: 10.1090/S0894-0347-2012-00758-9.  Google Scholar

[58]

H. H. Schaefer, Banach Lattices and Positive Operators, Die Grundlehren der mathematischen Wissenschaften, Band 215. Springer-Verlag, New York-Heidelberg, 1974.  Google Scholar

[59]

T. Shiga, A remark on infinite-dimensional Wiener processes with interactions, Z. Wahrsch. Verw. Gebiete, 47 (1979), 299-304.  doi: 10.1007/BF00535165.  Google Scholar

[60]

E. A. da SilvaR. R. da Silva and R. R. Souza, The analyticity of a generalized Ruelle's operator, Bull. Braz. Math. Soc. (N.S.), 45 (2014), 53-72.  doi: 10.1007/s00574-014-0040-3.  Google Scholar

[61]

E. A. da Silva, Pressure derivative on uncountable alphabet setting: a ruelle operator approach, arXiv e-prints, 2017. Google Scholar

[62]

M. Stadlbauer, Coupling methods for random topological Markov chains, Ergodic Theory Dynam. Systems, 37 (2017), 971-994.  doi: 10.1017/etds.2015.61.  Google Scholar

[63]

M. Stadlbauer and X. Zhang, On the law of the iterated logarithm for continued fractions with sequentially restricted partial quotients, arXiv e-prints, 2017. Google Scholar

[64]

T. Szarek, The stability of Markov operators on Polish spaces, Studia Math., 143 (2000), 145-152.  doi: 10.4064/sm-143-2-145-152.  Google Scholar

[65]

H. Tanemura, A system of infinitely many mutually reflecting Brownian balls in Rd, Probab. Theory Related Fields, 104 (1996), 399-426.  doi: 10.1007/BF01213687.  Google Scholar

[66]

P. Walters, A variational principle for the pressure of continuous transformations, Amer. J. Math., 97 (1975), 937-971.  doi: 10.2307/2373682.  Google Scholar

[67]

P. Walters, Invariant measures and equilibrium states for some mappings which expand distances, Trans. Amer. Math. Soc., 236 (1978), 121-153.  doi: 10.1090/S0002-9947-1978-0466493-1.  Google Scholar

[68]

K. Yosida and E. Hewitt, Finitely additive measures, Trans. Amer. Math. Soc., 72 (1952), 46-66.  doi: 10.1090/S0002-9947-1952-0045194-X.  Google Scholar

[69]

B. Zegarlinski, The strong decay to equilibrium for the stochastic dynamics of unbounded spin systems on a lattice, Comm. Math. Phys., 175 (1996), 401-432.  doi: 10.1007/BF02102414.  Google Scholar

show all references

References:
[1]

D. AguiarL. Cioletti and R. Ruviaro, A variational principle for the specific entropy for symbolic systems with uncountable alphabets, Mathematische Nachrichten, 291 (2018), 2506-2515.  doi: 10.1002/mana.201700229.  Google Scholar

[2]

C. D. Aliprantis and K. C. Border, Infinite Dimensional Analysis, A Hitchhiker's Guide, Third edition, Springer, Berlin, 2006.  Google Scholar

[3]

L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Second edition, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008.  Google Scholar

[4]

V. Baladi, Positive Transfer Operators and Decay of Correlations, Advanced Series in Nonlinear Dynamics, 16. World Scientific Publishing Co., Inc., River Edge, NJ, 2000. doi: 10.1142/9789812813633.  Google Scholar

[5]

A. T. BaravieraL. CiolettiA. O. LopesJ. Mohr and R. R. Souza, On the general one-dimensional $XY$ model: Positive and zero temperature, selection and non-selection, Rev. Math. Phys., 23 (2011), 1063-1113.  doi: 10.1142/S0129055X11004527.  Google Scholar

[6]

S. Berghout, R. Fernández and E. Verbitskiy, On the relation between gibbs and $g$-measures, Ergodic Theory and Dynamical Systems, (2018), 1–26. doi: 10.1017/etds.2018.13.  Google Scholar

[7]

M. Bessa and M. Stadlbauer, On the Lyapunov spectrum of relative transfer operators, Stoch. Dyn., 16 (2016), 1650024, 25 pp. doi: 10.1142/S0219493716500246.  Google Scholar

[8]

T. Bodineau and B. Helffer, The log-Sobolev inequality for unbounded spin systems, J. Funct. Anal., 166 (1999), 168-178.  doi: 10.1006/jfan.1999.3419.  Google Scholar

[9]

V. I. Bogachev and A. V. Kolesnikov, The Monge-Kantorovich problem: Achievements, connections, and perspectives, Russian Mathematical Surveys, 67 (2012), 785-890.  doi: 10.1070/rm2012v067n05abeh004808.  Google Scholar

[10]

F. Bolley, Separability and completeness for the Wasserstein distance, in Séminaire de Probabilités XLI, Lecture Notes in Math., Springer, Berlin, 1934 (2008), 371–377. doi: 10.1007/978-3-540-77913-1_17.  Google Scholar

[11]

R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Second revised edition. With a preface by David Ruelle, Edited by Jean-René Chazottes. Lecture Notes in Mathematics, 470. Springer-Verlag, Berlin, 2008.  Google Scholar

[12]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011.  Google Scholar

[13]

J. Buzzi and O. Sarig, Uniqueness of equilibrium measures for countable Markov shifts and multidimensional piecewise expanding maps, Ergodic Theory Dynam. Systems, 23 (2003), 1383-1400.  doi: 10.1017/S0143385703000087.  Google Scholar

[14]

M. CassandroE. OlivieriA. Pellegrinotti and E. Presutti, Existence and uniqueness of DLR measures for unbounded spin systems, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 41 (1977/78), 313-334.  doi: 10.1007/BF00533602.  Google Scholar

[15]

L. Cioletti, A. C. D. van Enter and R. Ruviaro, The double transpose of the ruelle operator, e-print, arXiv: 1710.03841, (2017), 1–19. Google Scholar

[16]

L. Cioletti and A. O. Lopes, Ruelle operator for continuous potentials and DLR-Gibbs measures, Preprint, arXiv: 1608.03881, 2016. Google Scholar

[17]

L. Cioletti and A. O. Lopes, Interactions, specifications, DLR probabilities and the Ruelle operator in the one-dimensional lattice, Discrete Contin. Dyn. Syst., 37 (2017), 6139-6152.  doi: 10.3934/dcds.2017264.  Google Scholar

[18]

L. Cioletti and E. A. Silva, Spectral properties of the Ruelle operator on the Walters class over compact spaces, Nonlinearity, 29 (2016), 2253-2278.  doi: 10.1088/0951-7715/29/8/2253.  Google Scholar

[19]

V. Cyr and O. Sarig, Spectral gap and transience for Ruelle operators on countable Markov shifts, Comm. Math. Phys., 292 (2009), 637-666.  doi: 10.1007/s00220-009-0891-4.  Google Scholar

[20]

R. L. Dobrushin and E. A. Pecherski, A criterion of the uniqueness of Gibbsian fields in the noncompact case, In Probability Theory and Mathematical Statistics (Tbilisi, 1982), Lecture Notes in Math., Springer, Berlin, 1021 (1983), 97–110. doi: 10.1007/BFb0072907.  Google Scholar

[21]

N. Dunford and J. T. Schwartz, Linear Operators. I. General Theory, With the assistance of W. G. Bade and R. G. Bartle. Pure and Applied Mathematics, Vol. 7. Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958.  Google Scholar

[22]

T. Eisner, B. Farkas, M. Haase and R. Nagel, Operator Theoretic Aspects of Ergodic Theory, Graduate Texts in Mathematics, 272. Springer, Cham, 2015. doi: 10.1007/978-3-319-16898-2.  Google Scholar

[23]

A. C. D. van EnterR. Fernández and A. D. Sokal, Regularity properties and pathologies of position-space renormalization-group transformations: scope and limitations of Gibbsian theory, J. Statist. Phys., 72 (1993), 879-1167.  doi: 10.1007/BF01048183.  Google Scholar

[24]

R. FernándezS. Gallo and G. Maillard, Regular $g$-measures are not always Gibbsian, Electron. Commun. Probab., 16 (2011), 732-740.  doi: 10.1214/ECP.v16-1681.  Google Scholar

[25]

J. Fritz, Gradient dynamics of infinite point systems, Ann. Probab., 15 (1987), 478-514.  doi: 10.1214/aop/1176992156.  Google Scholar

[26]

J. Fröhlich and B. Zegarliński, The phase transition in the discrete Gaussian chain with $1/r^2$ interaction energy, J. Statist. Phys., 63 (1991), 455-485.  doi: 10.1007/BF01029195.  Google Scholar

[27]

H.-O. Georgii, Gibbs Measures and Phase Transitions, Second edition, De Gruyter Studies in Mathematics, 9. Walter de Gruyter & Co., Berlin, 2011. doi: 10.1515/9783110250329.  Google Scholar

[28]

J. Glueck., Existence of a separating affine functional, MathOverflow. https://mathoverflow.net/q/302479. Google Scholar

[29]

H. Hennion and L. Hervé, Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-Compactness, Lecture Notes in Mathematics, 1766. Springer-Verlag, Berlin, 2001. doi: 10.1007/b87874.  Google Scholar

[30]

R. B. Israel and R. R. Phelps, Some convexity questions arising in statistical mechanics, Math. Scand., 54 (1984), 133-156.  doi: 10.7146/math.scand.a-12048.  Google Scholar

[31]

O. Jenkinson, Every ergodic measure is uniquely maximizing, Discrete Contin. Dyn. Syst., 16 (2006), 383-392.  doi: 10.3934/dcds.2006.16.383.  Google Scholar

[32]

C. Kardaras., Finitely additive probabilities and the fundamental theorem of asset pricing, in Contemporary Quantitative Finance, Springer, Berlin, (2010), 19–34. doi: 10.1007/978-3-642-03479-4_2.  Google Scholar

[33]

J. D. Knowles, Measures on topological spaces, Proc. London Math. Soc., 17 (1967), 139-156.  doi: 10.1112/plms/s3-17.1.139.  Google Scholar

[34]

Y. KondratievY. Kozitsky and T. Pasurek, Gibbs measures of disordered lattice systems with unbounded spins, Markov Process. Related Fields, 18 (2012), 553-582.   Google Scholar

[35]

R. Lang, Unendlich-dimensionale Wienerprozesse mit Wechselwirkung. Ⅰ. Existenz, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 38 (1977), 55-72.  doi: 10.1007/BF00534170.  Google Scholar

[36]

R. Lang, Unendlich-dimensionale Wienerprozesse mit Wechselwirkung. Ⅱ. Die reversiblen Masse sind kanonische Gibbs-Masse, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 39 (1977), 277-299.  doi: 10.1007/BF01877496.  Google Scholar

[37]

T. M. Liggett, Interacting Particle Systems, Reprint of the 1985 original, Classics in Mathematics, Springer-Verlag, Berlin, 2005. doi: 10.1007/b138374.  Google Scholar

[38]

J. L. Lebowitz and E. Presutti, Statistical mechanics of systems of unbounded spings, Comm. Math. Phys., 50 (1976), 195-218.  doi: 10.1007/BF01609401.  Google Scholar

[39]

T. Leblé and S. Serfaty, Large deviation principle for empirical fields of log and Riesz gases, Invent. Math., 210 (2017), 645-757.  doi: 10.1007/s00222-017-0738-0.  Google Scholar

[40]

A. O. LopesJ. K. MengueJ. Mohr and R. R. Souza, Entropy and variational principle for one-dimensional lattice systems with a general a priori probability: Positive and zero temperature, Ergodic Theory Dynam. Systems, 35 (2015), 1925-1961.  doi: 10.1017/etds.2014.15.  Google Scholar

[41]

R. D. Mauldin and M. Urbański, Conformal iterated function systems with applications to the geometry of continued fractions, Trans. Am. Math. Soc., 351 (1999), 4995-5025.  doi: 10.1090/S0002-9947-99-02268-0.  Google Scholar

[42]

R. D. Mauldin and M. Urbański, Gibbs states on the symbolic space over an infinite alphabet, Israel J. Math., 125 (2001), 93-130.  doi: 10.1007/BF02773377.  Google Scholar

[43] R. D. Mauldin and M. Urbański, Graph Directed Markov Systems, Geometry and dynamics of limit sets, Cambridge Tracts in Mathematics, 148. Cambridge University Press, Cambridge, 2003.  doi: 10.1017/CBO9780511543050.  Google Scholar
[44]

P. Meyer-Nieberg, Banach Lattices, Universitext, Springer-Verlag, Berlin, 1991. doi: 10.1007/978-3-642-76724-1.  Google Scholar

[45]

S. Meyn and R. L. Tweedie, Markov Chains and Stochastic Stability, Second edition, With a prologue by Peter W. Glynn, Cambridge University Press, Cambridge, 2009. doi: 10.1017/CBO9780511626630.  Google Scholar

[46]

H. Osada, Interacting Brownian motions in infinite dimensions with logarithmic interaction potentials, Ann. Probab., 41 (2013), 1-49.  doi: 10.1214/11-AOP736.  Google Scholar

[47]

W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque, (1990), 268 pp.  Google Scholar

[48]

K. R. Parthasarathy, Probability Measures on Metric Spaces, Reprint of the 1967 original, AMS Chelsea Publishing, Providence, RI, 2005. doi: 10.1090/chel/352.  Google Scholar

[49]

S. T. Rachev, Probability Metrics and the Stability of Stochastic Models, Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics, John Wiley & Sons, Ltd., Chichester, 1991.  Google Scholar

[50]

D. Ruelle, Statistical mechanics of a one-dimensional lattice gas, Comm. Math. Phys., 9 (1968), 267-278.  doi: 10.1007/BF01654281.  Google Scholar

[51]

D. Ruelle, Thermodynamic Formalism, The mathematical structures of equilibrium statistical mechanics, Second edition, Cambridge Mathematical Library. Cambridge University Press, Cambridge, 2004. doi: 10.1017/CBO9780511617546.  Google Scholar

[52]

O. M. Sarig, Thermodynamic formalism for countable Markov shifts, Ergodic Theory Dynam. Systems, 19 (1999), 1565-1593.  doi: 10.1017/S0143385799146820.  Google Scholar

[53]

O. M. Sarig, Phase transitions for countable Markov shifts, Comm. Math. Phys., 217 (2001), 555-577.  doi: 10.1007/s002200100367.  Google Scholar

[54]

O. M. Sarig, Thermodynamic formalism for null recurrent potentials, Israel J. Math., 121 (2001), 285-311.  doi: 10.1007/BF02802508.  Google Scholar

[55]

O. M. Sarig, Existence of Gibbs measures for countable Markov shifts, Proc. Amer. Math. Soc., 131 (2003), 1751-1758.  doi: 10.1090/S0002-9939-03-06927-2.  Google Scholar

[56]

O. M. Sarig, Lecture notes on thermodynamic formalism for topological markov shifts, Penn State, 2009. Google Scholar

[57]

O. M. Sarig, Symbolic dynamics for surface diffeomorphisms with positive entropy, J. Amer. Math. Soc., 26 (2013), 341-426.  doi: 10.1090/S0894-0347-2012-00758-9.  Google Scholar

[58]

H. H. Schaefer, Banach Lattices and Positive Operators, Die Grundlehren der mathematischen Wissenschaften, Band 215. Springer-Verlag, New York-Heidelberg, 1974.  Google Scholar

[59]

T. Shiga, A remark on infinite-dimensional Wiener processes with interactions, Z. Wahrsch. Verw. Gebiete, 47 (1979), 299-304.  doi: 10.1007/BF00535165.  Google Scholar

[60]

E. A. da SilvaR. R. da Silva and R. R. Souza, The analyticity of a generalized Ruelle's operator, Bull. Braz. Math. Soc. (N.S.), 45 (2014), 53-72.  doi: 10.1007/s00574-014-0040-3.  Google Scholar

[61]

E. A. da Silva, Pressure derivative on uncountable alphabet setting: a ruelle operator approach, arXiv e-prints, 2017. Google Scholar

[62]

M. Stadlbauer, Coupling methods for random topological Markov chains, Ergodic Theory Dynam. Systems, 37 (2017), 971-994.  doi: 10.1017/etds.2015.61.  Google Scholar

[63]

M. Stadlbauer and X. Zhang, On the law of the iterated logarithm for continued fractions with sequentially restricted partial quotients, arXiv e-prints, 2017. Google Scholar

[64]

T. Szarek, The stability of Markov operators on Polish spaces, Studia Math., 143 (2000), 145-152.  doi: 10.4064/sm-143-2-145-152.  Google Scholar

[65]

H. Tanemura, A system of infinitely many mutually reflecting Brownian balls in Rd, Probab. Theory Related Fields, 104 (1996), 399-426.  doi: 10.1007/BF01213687.  Google Scholar

[66]

P. Walters, A variational principle for the pressure of continuous transformations, Amer. J. Math., 97 (1975), 937-971.  doi: 10.2307/2373682.  Google Scholar

[67]

P. Walters, Invariant measures and equilibrium states for some mappings which expand distances, Trans. Amer. Math. Soc., 236 (1978), 121-153.  doi: 10.1090/S0002-9947-1978-0466493-1.  Google Scholar

[68]

K. Yosida and E. Hewitt, Finitely additive measures, Trans. Amer. Math. Soc., 72 (1952), 46-66.  doi: 10.1090/S0002-9947-1952-0045194-X.  Google Scholar

[69]

B. Zegarlinski, The strong decay to equilibrium for the stochastic dynamics of unbounded spin systems on a lattice, Comm. Math. Phys., 175 (1996), 401-432.  doi: 10.1007/BF02102414.  Google Scholar

Figure 1.  Relations among the three theories
Figure 2.  An example of a random path $ \gamma(t) $ constructed from $ q_1,q_2,\ldots $
[1]

Marc Kesseböhmer, Sabrina Kombrink. A complex Ruelle-Perron-Frobenius theorem for infinite Markov shifts with applications to renewal theory. Discrete & Continuous Dynamical Systems - S, 2017, 10 (2) : 335-352. doi: 10.3934/dcdss.2017016

[2]

Yakov Pesin. On the work of Sarig on countable Markov chains and thermodynamic formalism. Journal of Modern Dynamics, 2014, 8 (1) : 1-14. doi: 10.3934/jmd.2014.8.1

[3]

Renaud Leplaideur. From local to global equilibrium states: Thermodynamic formalism via an inducing scheme. Electronic Research Announcements, 2014, 21: 72-79. doi: 10.3934/era.2014.21.72

[4]

Manfred Denker, Yuri Kifer, Manuel Stadlbauer. Thermodynamic formalism for random countable Markov shifts. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 131-164. doi: 10.3934/dcds.2008.22.131

[5]

Manfred Denker, Yuri Kifer, Manuel Stadlbauer. Corrigendum to: Thermodynamic formalism for random countable Markov shifts. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 593-594. doi: 10.3934/dcds.2015.35.593

[6]

Michael Jakobson, Lucia D. Simonelli. Countable Markov partitions suitable for thermodynamic formalism. Journal of Modern Dynamics, 2018, 13: 199-219. doi: 10.3934/jmd.2018018

[7]

Luis Barreira. Nonadditive thermodynamic formalism: Equilibrium and Gibbs measures. Discrete & Continuous Dynamical Systems - A, 2006, 16 (2) : 279-305. doi: 10.3934/dcds.2006.16.279

[8]

Marcelo Sobottka. Right-permutative cellular automata on topological Markov chains. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 1095-1109. doi: 10.3934/dcds.2008.20.1095

[9]

Mark F. Demers, Christopher J. Ianzano, Philip Mayer, Peter Morfe, Elizabeth C. Yoo. Limiting distributions for countable state topological Markov chains with holes. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 105-130. doi: 10.3934/dcds.2017005

[10]

Vaughn Climenhaga. A note on two approaches to the thermodynamic formalism. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 995-1005. doi: 10.3934/dcds.2010.27.995

[11]

Stefan Klus, Péter Koltai, Christof Schütte. On the numerical approximation of the Perron-Frobenius and Koopman operator. Journal of Computational Dynamics, 2016, 3 (1) : 51-79. doi: 10.3934/jcd.2016003

[12]

Yongluo Cao, De-Jun Feng, Wen Huang. The thermodynamic formalism for sub-additive potentials. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 639-657. doi: 10.3934/dcds.2008.20.639

[13]

Anna Mummert. The thermodynamic formalism for almost-additive sequences. Discrete & Continuous Dynamical Systems - A, 2006, 16 (2) : 435-454. doi: 10.3934/dcds.2006.16.435

[14]

Martin Lustig, Caglar Uyanik. Perron-Frobenius theory and frequency convergence for reducible substitutions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 355-385. doi: 10.3934/dcds.2017015

[15]

Gary Froyland, Ognjen Stancevic. Escape rates and Perron-Frobenius operators: Open and closed dynamical systems. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 457-472. doi: 10.3934/dcdsb.2010.14.457

[16]

Marianne Akian, Stéphane Gaubert, Antoine Hochart. A game theory approach to the existence and uniqueness of nonlinear Perron-Frobenius eigenvectors. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 207-231. doi: 10.3934/dcds.2020009

[17]

Gerhard Keller. Stability index, uncertainty exponent, and thermodynamic formalism for intermingled basins of chaotic attractors. Discrete & Continuous Dynamical Systems - S, 2017, 10 (2) : 313-334. doi: 10.3934/dcdss.2017015

[18]

Eugen Mihailescu. Applications of thermodynamic formalism in complex dynamics on $\mathbb{P}^2$. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 821-836. doi: 10.3934/dcds.2001.7.821

[19]

Jiu Ding, Noah H. Rhee. A unified maximum entropy method via spline functions for Frobenius-Perron operators. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 235-245. doi: 10.3934/naco.2013.3.235

[20]

Stefan Klus, Christof Schütte. Towards tensor-based methods for the numerical approximation of the Perron--Frobenius and Koopman operator. Journal of Computational Dynamics, 2016, 3 (2) : 139-161. doi: 10.3934/jcd.2016007

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (54)
  • HTML views (80)
  • Cited by (0)

Other articles
by authors

[Back to Top]