
-
Previous Article
Spectral estimates for Ruelle operators with two parameters and sharp large deviations
- DCDS Home
- This Issue
-
Next Article
Scattering for a mass critical NLS system below the ground state with and without mass-resonance condition
Oblique projection based stabilizing feedback for nonautonomous coupled parabolic-ode systems
1. | Institute for Mathematics and Scientific Computing, Karl-Franzens-Universität, Heinrichstr. 36, 8010 Graz, Austria |
2. | Johann Radon Institute for Computational and Applied Mathematics, ÖAW, Altenbergerstraße 69, A-4040 Linz, Austria |
Global feedback stabilizability results are derived for nonautonomous coupled systems arising from the linearization around a given time-dependent trajectory of FitzHugh-CNagumo type systems. The feedback is explicit and is based on suitable oblique (nonorthogonal) projections in Hilbert spaces. The actuators are, typically, a finite number of indicator functions and act only in the parabolic equation. Subsequently, local feedback stabilizability to time-dependent trajectories results are derived for nonlinear coupled parabolic-ODE systems of the FitzHugh-CNagumo type. Simulations are presented showing the stabilizing performance of the feedback control.
References:
[1] |
S. Agmon, Lectures on Elliptic Boundary Value Problems, Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London, 1965, URL https://bookstore.ams.org/chel-369-h/. |
[2] |
R. R. Aliev and A. V. Panfilov,
A simple two-variable model of cardiac excitation, Chaos, Solitons & Fractals, 7 (1996), 293-301.
doi: 10.1016/0960-0779(95)00089-5. |
[3] |
V. Barbu, S. S. Rodrigues and A. Shirikyan,
Internal exponential stabilization to a nonstationary solution for 3D Navier-Stokes equations, SIAM J. Control Optim., 49 (2011), 1454-1478.
doi: 10.1137/100785739. |
[4] |
V. Barbu and G. Wang,
Feedback stabilization of periodic solutions to nonlinear parabolic-like evolution systems, Indiana Univ. Math. J., 54 (2005), 1521-1546.
doi: 10.1512/iumj.2005.54.2663. |
[5] |
T. Breiten, K. Kunisch and S. S. Rodrigues,
Feedback stabilization to nonstationary solutions of a class of reaction diffusion equations of FitzHugh-Nagumo type, SIAM J. Control Optim., 55 (2017), 2684-2713.
doi: 10.1137/15M1038165. |
[6] |
F. Demengel and G. Demengel, Functional Spaces for the Theory of Elliptic Partial Differential Equations, Springer, London, EDP Sciences, Les Ulis, 2012.
doi: 10.1007/978-1-4471-2807-6. |
[7] |
R. FitzHugh,
Impulses and physiological states in theoretical models of nerve membrane, Biophysical J., 1 (1961), 445-466.
doi: 10.1016/S0006-3495(61)86902-6. |
[8] |
M. Hieber, N. Kajiwara, K. Kress and P. Tolksdorf, Strong time periodic solutions to the bidomain equations with Fitzhugh–Nagumo type nonlinearities, Analysis of PDEs, (2017), URL https://arXiv.org/abs/1708.05304. |
[9] |
B. Hu, Blow-Up Theories for Semilinear Parabolic Equations, Lecture Notes in Mathematics, 2018. Springer, Heidelberg, 2011.
doi: 10.1007/978-3-642-18460-4. |
[10] |
V. Y. Ivrii,
Second term of the spectral asymptotic expansion of the Laplace-Beltrami operator on manifolds with boundary, Funct. Anal. Appl., 14 (1980), 98-106.
doi: 10.1007/BF01086550. |
[11] |
J. Keener and J. Sneyd, Mathematical Physiology. Vol. II: Systems Physiology, Second edition, Interdisciplinary Applied Mathematics, 8/Ⅱ. Springer, New York, 2009. |
[12] |
P. Kröger,
Upper bounds for the Neumann eigenvalues on a bounded domain in euclidean space, J. Funct. Anal., 106 (1992), 353-357.
doi: 10.1016/0022-1236(92)90052-K. |
[13] |
K. Kunisch and S. S. Rodrigues, Explicit exponential stabilization of nonautonomous linear parabolic-like systems by a finite number of internal actuators, ESAIM Control Optim. Calc. Var., (2018).
doi: 10.1051/cocv/2018054. |
[14] |
H. A. Levine,
Some nonexistence and instability theorems for solutions of formally parabolic equations of the form ${P}u_t = -{A}u+{\mathcal F}(u)$, Arch. Ration. Mech. Anal., 51 (1973), 371-386.
doi: 10.1007/BF00263041. |
[15] |
J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod et Gauthier-Villars, Paris, 1969. |
[16] |
J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Die Grundlehren Math. Wiss. Einzeldarstellungen, vol. Ⅰ. Springer-Verlag, 1972.
doi: 10.1007/978-3-642-65161-8. |
[17] |
A. Lunardi,
Stabilizability of time-periodic parabolic equations, SIAM J. Control Optim., 29 (1991), 810-828.
doi: 10.1137/0329044. |
[18] |
J. Nagumo, S. Arimoto and S. Yoshizawa,
An active pulse transmission line simulating nerve axon, Proceedings of the IRE, 50 (1962), 2061-2070.
doi: 10.1109/JRPROC.1962.288235. |
[19] |
D. Phan and S. S. Rodrigues, Stabilization to trajectories for parabolic equations, Math. Control Signals Syst., 30 (2018), Art. 11, 50 pp.
doi: 10.1007/s00498-018-0218-0. |
[20] |
S. S. Rodrigues and K. Sturm, On the explicit feedback stabilisation of 1D linear nonautonomous parabolic equations via oblique projections, IMA J. Math. Control Inform., (2018).
doi: 10.1093/imamci/dny045. |
[21] |
J. M. Rogers and A. D. McCulloch,
A collocation-Galerkin finite element model of cardiac action potential propagation, IEEE Trans. Biomed. Eng, 41 (1994), 743-757.
doi: 10.1109/10.310090. |
[22] |
R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, Second edition, CBMS-NSF Regional Conference Series in Applied Mathematics, 66. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1995.
doi: 10.1137/1.9781611970050. |
[23] |
R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, Reprint of the 1984 edition. AMS Chelsea Publishing, Providence, RI, 2001, http://www.ams.org/bookstore-getitem/item=CHEL-343-H.
doi: 10.1090/chel/343. |
[24] |
H. Weyl,
Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung), Math. Ann., 71 (1912), 441-479.
doi: 10.1007/BF01456804. |
[25] |
W. H. Young,
On classes of summable functions and their Fourier series, Proc. R. Soc. Lond., 87 (1912), 225-229.
doi: 10.1098/rspa.1912.0076. |
show all references
References:
[1] |
S. Agmon, Lectures on Elliptic Boundary Value Problems, Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London, 1965, URL https://bookstore.ams.org/chel-369-h/. |
[2] |
R. R. Aliev and A. V. Panfilov,
A simple two-variable model of cardiac excitation, Chaos, Solitons & Fractals, 7 (1996), 293-301.
doi: 10.1016/0960-0779(95)00089-5. |
[3] |
V. Barbu, S. S. Rodrigues and A. Shirikyan,
Internal exponential stabilization to a nonstationary solution for 3D Navier-Stokes equations, SIAM J. Control Optim., 49 (2011), 1454-1478.
doi: 10.1137/100785739. |
[4] |
V. Barbu and G. Wang,
Feedback stabilization of periodic solutions to nonlinear parabolic-like evolution systems, Indiana Univ. Math. J., 54 (2005), 1521-1546.
doi: 10.1512/iumj.2005.54.2663. |
[5] |
T. Breiten, K. Kunisch and S. S. Rodrigues,
Feedback stabilization to nonstationary solutions of a class of reaction diffusion equations of FitzHugh-Nagumo type, SIAM J. Control Optim., 55 (2017), 2684-2713.
doi: 10.1137/15M1038165. |
[6] |
F. Demengel and G. Demengel, Functional Spaces for the Theory of Elliptic Partial Differential Equations, Springer, London, EDP Sciences, Les Ulis, 2012.
doi: 10.1007/978-1-4471-2807-6. |
[7] |
R. FitzHugh,
Impulses and physiological states in theoretical models of nerve membrane, Biophysical J., 1 (1961), 445-466.
doi: 10.1016/S0006-3495(61)86902-6. |
[8] |
M. Hieber, N. Kajiwara, K. Kress and P. Tolksdorf, Strong time periodic solutions to the bidomain equations with Fitzhugh–Nagumo type nonlinearities, Analysis of PDEs, (2017), URL https://arXiv.org/abs/1708.05304. |
[9] |
B. Hu, Blow-Up Theories for Semilinear Parabolic Equations, Lecture Notes in Mathematics, 2018. Springer, Heidelberg, 2011.
doi: 10.1007/978-3-642-18460-4. |
[10] |
V. Y. Ivrii,
Second term of the spectral asymptotic expansion of the Laplace-Beltrami operator on manifolds with boundary, Funct. Anal. Appl., 14 (1980), 98-106.
doi: 10.1007/BF01086550. |
[11] |
J. Keener and J. Sneyd, Mathematical Physiology. Vol. II: Systems Physiology, Second edition, Interdisciplinary Applied Mathematics, 8/Ⅱ. Springer, New York, 2009. |
[12] |
P. Kröger,
Upper bounds for the Neumann eigenvalues on a bounded domain in euclidean space, J. Funct. Anal., 106 (1992), 353-357.
doi: 10.1016/0022-1236(92)90052-K. |
[13] |
K. Kunisch and S. S. Rodrigues, Explicit exponential stabilization of nonautonomous linear parabolic-like systems by a finite number of internal actuators, ESAIM Control Optim. Calc. Var., (2018).
doi: 10.1051/cocv/2018054. |
[14] |
H. A. Levine,
Some nonexistence and instability theorems for solutions of formally parabolic equations of the form ${P}u_t = -{A}u+{\mathcal F}(u)$, Arch. Ration. Mech. Anal., 51 (1973), 371-386.
doi: 10.1007/BF00263041. |
[15] |
J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod et Gauthier-Villars, Paris, 1969. |
[16] |
J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Die Grundlehren Math. Wiss. Einzeldarstellungen, vol. Ⅰ. Springer-Verlag, 1972.
doi: 10.1007/978-3-642-65161-8. |
[17] |
A. Lunardi,
Stabilizability of time-periodic parabolic equations, SIAM J. Control Optim., 29 (1991), 810-828.
doi: 10.1137/0329044. |
[18] |
J. Nagumo, S. Arimoto and S. Yoshizawa,
An active pulse transmission line simulating nerve axon, Proceedings of the IRE, 50 (1962), 2061-2070.
doi: 10.1109/JRPROC.1962.288235. |
[19] |
D. Phan and S. S. Rodrigues, Stabilization to trajectories for parabolic equations, Math. Control Signals Syst., 30 (2018), Art. 11, 50 pp.
doi: 10.1007/s00498-018-0218-0. |
[20] |
S. S. Rodrigues and K. Sturm, On the explicit feedback stabilisation of 1D linear nonautonomous parabolic equations via oblique projections, IMA J. Math. Control Inform., (2018).
doi: 10.1093/imamci/dny045. |
[21] |
J. M. Rogers and A. D. McCulloch,
A collocation-Galerkin finite element model of cardiac action potential propagation, IEEE Trans. Biomed. Eng, 41 (1994), 743-757.
doi: 10.1109/10.310090. |
[22] |
R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, Second edition, CBMS-NSF Regional Conference Series in Applied Mathematics, 66. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1995.
doi: 10.1137/1.9781611970050. |
[23] |
R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, Reprint of the 1984 edition. AMS Chelsea Publishing, Providence, RI, 2001, http://www.ams.org/bookstore-getitem/item=CHEL-343-H.
doi: 10.1090/chel/343. |
[24] |
H. Weyl,
Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung), Math. Ann., 71 (1912), 441-479.
doi: 10.1007/BF01456804. |
[25] |
W. H. Young,
On classes of summable functions and their Fourier series, Proc. R. Soc. Lond., 87 (1912), 225-229.
doi: 10.1098/rspa.1912.0076. |
















[1] |
Tobias Breiten, Karl Kunisch. Boundary feedback stabilization of the monodomain equations. Mathematical Control and Related Fields, 2017, 7 (3) : 369-391. doi: 10.3934/mcrf.2017013 |
[2] |
Jean-Pierre Raymond, Laetitia Thevenet. Boundary feedback stabilization of the two dimensional Navier-Stokes equations with finite dimensional controllers. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 1159-1187. doi: 10.3934/dcds.2010.27.1159 |
[3] |
Evrad M. D. Ngom, Abdou Sène, Daniel Y. Le Roux. Global stabilization of the Navier-Stokes equations around an unstable equilibrium state with a boundary feedback controller. Evolution Equations and Control Theory, 2015, 4 (1) : 89-106. doi: 10.3934/eect.2015.4.89 |
[4] |
Evrad M. D. Ngom, Abdou Sène, Daniel Y. Le Roux. Boundary stabilization of the Navier-Stokes equations with feedback controller via a Galerkin method. Evolution Equations and Control Theory, 2014, 3 (1) : 147-166. doi: 10.3934/eect.2014.3.147 |
[5] |
Xing Wang, Chang-Qi Tao, Guo-Ji Tang. Differential optimization in finite-dimensional spaces. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1495-1505. doi: 10.3934/jimo.2016.12.1495 |
[6] |
Paolo Maria Mariano. Line defect evolution in finite-dimensional manifolds. Discrete and Continuous Dynamical Systems - B, 2012, 17 (2) : 575-596. doi: 10.3934/dcdsb.2012.17.575 |
[7] |
A. Jiménez-Casas, Mario Castro, Justine Yassapan. Finite-dimensional behavior in a thermosyphon with a viscoelastic fluid. Conference Publications, 2013, 2013 (special) : 375-384. doi: 10.3934/proc.2013.2013.375 |
[8] |
Barbara Panicucci, Massimo Pappalardo, Mauro Passacantando. On finite-dimensional generalized variational inequalities. Journal of Industrial and Management Optimization, 2006, 2 (1) : 43-53. doi: 10.3934/jimo.2006.2.43 |
[9] |
Igor Chueshov, Alexander V. Rezounenko. Finite-dimensional global attractors for parabolic nonlinear equations with state-dependent delay. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1685-1704. doi: 10.3934/cpaa.2015.14.1685 |
[10] |
Duy Phan, Lassi Paunonen. Finite-dimensional controllers for robust regulation of boundary control systems. Mathematical Control and Related Fields, 2021, 11 (1) : 95-117. doi: 10.3934/mcrf.2020029 |
[11] |
Michael L. Frankel, Victor Roytburd. A Finite-dimensional attractor for a nonequilibrium Stefan problem with heat losses. Discrete and Continuous Dynamical Systems, 2005, 13 (1) : 35-62. doi: 10.3934/dcds.2005.13.35 |
[12] |
Varga K. Kalantarov, Edriss S. Titi. Global stabilization of the Navier-Stokes-Voight and the damped nonlinear wave equations by finite number of feedback controllers. Discrete and Continuous Dynamical Systems - B, 2018, 23 (3) : 1325-1345. doi: 10.3934/dcdsb.2018153 |
[13] |
Tobias Breiten, Karl Kunisch. Feedback stabilization of the three-dimensional Navier-Stokes equations using generalized Lyapunov equations. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4197-4229. doi: 10.3934/dcds.2020178 |
[14] |
Sergey Popov, Volker Reitmann. Frequency domain conditions for finite-dimensional projectors and determining observations for the set of amenable solutions. Discrete and Continuous Dynamical Systems, 2014, 34 (1) : 249-267. doi: 10.3934/dcds.2014.34.249 |
[15] |
Laurence Cherfils, Hussein Fakih, Alain Miranville. Finite-dimensional attractors for the Bertozzi--Esedoglu--Gillette--Cahn--Hilliard equation in image inpainting. Inverse Problems and Imaging, 2015, 9 (1) : 105-125. doi: 10.3934/ipi.2015.9.105 |
[16] |
Ionuţ Munteanu. Exponential stabilization of the stochastic Burgers equation by boundary proportional feedback. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 2173-2185. doi: 10.3934/dcds.2019091 |
[17] |
Zhiling Guo, Shugen Chai. Exponential stabilization of the problem of transmission of wave equation with linear dynamical feedback control. Evolution Equations and Control Theory, 2022 doi: 10.3934/eect.2022001 |
[18] |
Elena Braverman, Alexandra Rodkina. Stabilization of difference equations with noisy proportional feedback control. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2067-2088. doi: 10.3934/dcdsb.2017085 |
[19] |
Irena Lasiecka, Buddhika Priyasad, Roberto Triggiani. Uniform stabilization of Boussinesq systems in critical $ \mathbf{L}^q $-based Sobolev and Besov spaces by finite dimensional interior localized feedback controls. Discrete and Continuous Dynamical Systems - B, 2020, 25 (10) : 4071-4117. doi: 10.3934/dcdsb.2020187 |
[20] |
H. D. Scolnik, N. E. Echebest, M. T. Guardarucci. Extensions of incomplete oblique projections method for solving rank-deficient least-squares problems. Journal of Industrial and Management Optimization, 2009, 5 (2) : 175-191. doi: 10.3934/jimo.2009.5.175 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]