November  2019, 39(11): 6391-6417. doi: 10.3934/dcds.2019277

Spectral estimates for Ruelle operators with two parameters and sharp large deviations

1. 

Université de Bordeaux, Institut de Mathématiques de Bordeaux, 351, Cours de la Libération, 33405 Talence, France

2. 

University of Western Australia, Department of Mathematics and Statistics, 35 Stirling Highway, Perth WA 6009, Australia

Received  November 2018 Revised  April 2019 Published  August 2019

We obtain spectral estimates for the iterations of Ruelle operators $ L_{f + (a + {\bf i} b)\tau + (c + {\bf i} d) g} $ with two complex parameters and Hölder continuous functions $ f,\: g $ generalizing the case $ {\rm{Pr}}(f) = 0 $ studied in [9]. As an application we prove a sharp large deviation theorem concerning exponentially shrinking intervals which improves the result in [8].

Citation: Vesselin Petkov, Luchezar Stoyanov. Spectral estimates for Ruelle operators with two parameters and sharp large deviations. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6391-6417. doi: 10.3934/dcds.2019277
References:
[1]

R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lect. Notes in Maths. 470. Springer-Verlag, Berlin, 2008.

[2]

R. Bowen, Symbolic dynamics for hyperbolic flows, Amer. J. Math., 95 (1973), 429-460.  doi: 10.2307/2373793.

[3]

R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows, Invent. Math., 29 (1975), 181-202.  doi: 10.1007/BF01389848.

[4]

D. Dolgopyat, Decay of correlations in Anosov flows, Ann. Math., 147 (1998), 357-390.  doi: 10.2307/121012.

[5] A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its Applications, 54. Cambridge Univ. Press, Cambridge, 1995.  doi: 10.1017/CBO9780511809187.
[6]

S. P. Lalley, Distribution of periodic orbits of symbolic and Axiom A flows, Adv. Appl. Math., 8 (1987), 154-193.  doi: 10.1016/0196-8858(87)90012-1.

[7]

W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque, (1990), 268 pp.

[8]

V. Petkov and L. Stoyanov, Sharp large deviations for some hyperbolic systems, Erg. Th. & Dyn. Sys., 35 (2015), 249-273. doi: 10.1017/etds.2013.48.

[9]

V. Petkov and L. Stoyanov, Ruelle transfer operators with two complex parameters and applications, Discr. Cont. Dyn. Sys. A, 36 (2016), 6413-6451. doi: 10.3934/dcds.2016077.

[10]

M. Pollicott and R. Sharp, Large deviations, fluctuations and shrinking intervals, Comm. Math. Phys., 290 (2009), 321-334.  doi: 10.1007/s00220-008-0725-9.

[11]

L. Stoyanov, Spectra of Ruelle transfer operators for Axiom A flows, Nonlinearity, 24 (2011), 1089-1120.  doi: 10.1088/0951-7715/24/4/005.

[12]

L. Stoyanov, Pinching conditions, linearization and regularity of Axiom A flows, Discr. Cont. Dyn. Sys. A, 33 (2013), 391-412.  doi: 10.3934/dcds.2013.33.391.

[13]

S. Waddington, Large deviations for Anosov flows, Ann. Inst. H. Poincaré, Analyse non-linéaire, 13 (1996), 445-484.  doi: 10.1016/S0294-1449(16)30110-X.

show all references

References:
[1]

R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lect. Notes in Maths. 470. Springer-Verlag, Berlin, 2008.

[2]

R. Bowen, Symbolic dynamics for hyperbolic flows, Amer. J. Math., 95 (1973), 429-460.  doi: 10.2307/2373793.

[3]

R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows, Invent. Math., 29 (1975), 181-202.  doi: 10.1007/BF01389848.

[4]

D. Dolgopyat, Decay of correlations in Anosov flows, Ann. Math., 147 (1998), 357-390.  doi: 10.2307/121012.

[5] A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its Applications, 54. Cambridge Univ. Press, Cambridge, 1995.  doi: 10.1017/CBO9780511809187.
[6]

S. P. Lalley, Distribution of periodic orbits of symbolic and Axiom A flows, Adv. Appl. Math., 8 (1987), 154-193.  doi: 10.1016/0196-8858(87)90012-1.

[7]

W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque, (1990), 268 pp.

[8]

V. Petkov and L. Stoyanov, Sharp large deviations for some hyperbolic systems, Erg. Th. & Dyn. Sys., 35 (2015), 249-273. doi: 10.1017/etds.2013.48.

[9]

V. Petkov and L. Stoyanov, Ruelle transfer operators with two complex parameters and applications, Discr. Cont. Dyn. Sys. A, 36 (2016), 6413-6451. doi: 10.3934/dcds.2016077.

[10]

M. Pollicott and R. Sharp, Large deviations, fluctuations and shrinking intervals, Comm. Math. Phys., 290 (2009), 321-334.  doi: 10.1007/s00220-008-0725-9.

[11]

L. Stoyanov, Spectra of Ruelle transfer operators for Axiom A flows, Nonlinearity, 24 (2011), 1089-1120.  doi: 10.1088/0951-7715/24/4/005.

[12]

L. Stoyanov, Pinching conditions, linearization and regularity of Axiom A flows, Discr. Cont. Dyn. Sys. A, 33 (2013), 391-412.  doi: 10.3934/dcds.2013.33.391.

[13]

S. Waddington, Large deviations for Anosov flows, Ann. Inst. H. Poincaré, Analyse non-linéaire, 13 (1996), 445-484.  doi: 10.1016/S0294-1449(16)30110-X.

[1]

Renaud Leplaideur, Benoît Saussol. Large deviations for return times in non-rectangle sets for axiom a diffeomorphisms. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 327-344. doi: 10.3934/dcds.2008.22.327

[2]

Frédéric Naud. The Ruelle spectrum of generic transfer operators. Discrete and Continuous Dynamical Systems, 2012, 32 (7) : 2521-2531. doi: 10.3934/dcds.2012.32.2521

[3]

Miguel Abadi, Sandro Vaienti. Large deviations for short recurrence. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 729-747. doi: 10.3934/dcds.2008.21.729

[4]

Patricia Domínguez, Peter Makienko, Guillermo Sienra. Ruelle operator and transcendental entire maps. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 773-789. doi: 10.3934/dcds.2005.12.773

[5]

Vesselin Petkov, Luchezar Stoyanov. Ruelle transfer operators with two complex parameters and applications. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6413-6451. doi: 10.3934/dcds.2016077

[6]

Dongmei Zheng, Ercai Chen, Jiahong Yang. On large deviations for amenable group actions. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 7191-7206. doi: 10.3934/dcds.2016113

[7]

Salah-Eldin A. Mohammed, Tusheng Zhang. Large deviations for stochastic systems with memory. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 881-893. doi: 10.3934/dcdsb.2006.6.881

[8]

Dieter Mayer, Tobias Mühlenbruch, Fredrik Strömberg. The transfer operator for the Hecke triangle groups. Discrete and Continuous Dynamical Systems, 2012, 32 (7) : 2453-2484. doi: 10.3934/dcds.2012.32.2453

[9]

Yongqiang Suo, Chenggui Yuan. Large deviations for neutral stochastic functional differential equations. Communications on Pure and Applied Analysis, 2020, 19 (4) : 2369-2384. doi: 10.3934/cpaa.2020103

[10]

Thomas Bogenschütz, Achim Doebler. Large deviations in expanding random dynamical systems. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 805-812. doi: 10.3934/dcds.1999.5.805

[11]

Mathias Staudigl, Srinivas Arigapudi, William H. Sandholm. Large deviations and Stochastic stability in Population Games. Journal of Dynamics and Games, 2021  doi: 10.3934/jdg.2021021

[12]

Yoshikazu Giga, Hiroyoshi Mitake, Hung V. Tran. Remarks on large time behavior of level-set mean curvature flow equations with driving and source terms. Discrete and Continuous Dynamical Systems - B, 2020, 25 (10) : 3983-3999. doi: 10.3934/dcdsb.2019228

[13]

Leandro Cioletti, Artur O. Lopes, Manuel Stadlbauer. Ruelle operator for continuous potentials and DLR-Gibbs measures. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 4625-4652. doi: 10.3934/dcds.2020195

[14]

Leandro Cioletti, Artur O. Lopes. Interactions, specifications, DLR probabilities and the Ruelle operator in the one-dimensional lattice. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6139-6152. doi: 10.3934/dcds.2017264

[15]

Mark F. Demers, Hong-Kun Zhang. Spectral analysis of the transfer operator for the Lorentz gas. Journal of Modern Dynamics, 2011, 5 (4) : 665-709. doi: 10.3934/jmd.2011.5.665

[16]

Katsukuni Nakagawa. Compactness of transfer operators and spectral representation of Ruelle zeta functions for super-continuous functions. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6331-6350. doi: 10.3934/dcds.2020282

[17]

Artur O. Lopes, Rafael O. Ruggiero. Large deviations and Aubry-Mather measures supported in nonhyperbolic closed geodesics. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1155-1174. doi: 10.3934/dcds.2011.29.1155

[18]

Federico Bassetti, Lucia Ladelli. Large deviations for the solution of a Kac-type kinetic equation. Kinetic and Related Models, 2013, 6 (2) : 245-268. doi: 10.3934/krm.2013.6.245

[19]

Alexander Veretennikov. On large deviations in the averaging principle for SDE's with a "full dependence,'' revisited. Discrete and Continuous Dynamical Systems - B, 2013, 18 (2) : 523-549. doi: 10.3934/dcdsb.2013.18.523

[20]

Martino Bardi, Annalisa Cesaroni, Daria Ghilli. Large deviations for some fast stochastic volatility models by viscosity methods. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 3965-3988. doi: 10.3934/dcds.2015.35.3965

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (222)
  • HTML views (121)
  • Cited by (1)

Other articles
by authors

[Back to Top]