November  2019, 39(11): 6441-6465. doi: 10.3934/dcds.2019279

SRB measures for some diffeomorphisms with dominated splittings as zero noise limits

School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China

Received  December 2018 Revised  April 2019 Published  August 2019

Fund Project: Zeya Mi was partially supported by NSFC 11801278 and The Startup Foundation for Introducing Talent of NUIST(Grant No. 2017r070).

In this paper, we provide a technical result on the existence of Gibbs $ cu $-states for diffeomorphisms with dominated splittings. More precisely, for given $ C^2 $ diffeomorphim $ f $ with dominated splitting $ T_{\Lambda}M = E\oplus F $ on an attractor $ \Lambda $, by considering some suitable random perturbation of $ f $, we show that for any zero noise limit of ergodic stationary measures, if it has positive integrable Lyapunov exponents along invariant sub-bundle $ E $, then its ergodic components contain Gibbs $ cu $-states associated to $ E $. With this technique, we show the existence of SRB measures and physical measures for some systems exhibiting dominated splittings and weak hyperbolicity.

Citation: Zeya Mi. SRB measures for some diffeomorphisms with dominated splittings as zero noise limits. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6441-6465. doi: 10.3934/dcds.2019279
References:
[1]

J. F. AlvesV. Araújo and C. H. Vásquez, Stochastic stability of non-uniformly hyperbolic diffeomorphisms, Stochastics and Dynamics, 7 (2007), 299-333.  doi: 10.1142/S0219493707002049.

[2]

J. F. AlvesC. Bonatti and M. Viana, SRB measures for partially hyperbolic systems whose central direction is mostly expanding, Invent. Math., 140 (2000), 351-398.  doi: 10.1007/s002220000057.

[3]

J. F. AlvesC. L. DiasS. Luzzatto and V. Pinheiro, SRB measures for partially hyperbolic systems whose central direction is weakly expanding, J. Eur. Math. Soc. (JEMS), 19 (2017), 2911-2946.  doi: 10.4171/JEMS/731.

[4]

J. F. Alves, Statistical Analysis of Non-Uniformly Expanding Dynamical Systems, IMPA, Rio De Janeiro, 2003.

[5]

M. Andersson and C. H. Vásquez, On mostly expanding diffeomorphisms, Ergodic Theory Dynam. Systems, 38 (2018), 2838-2859.  doi: 10.1017/etds.2017.17.

[6]

V. Araújo, Attractors and time averages for random maps, Ann. Inst. H. Poincar Anal. Non Linaire., 17 (2000), 307-369.  doi: 10.1016/S0294-1449(00)00112-8.

[7]

V. Araújo, Infinitely many stochastically stable attractors, Nonlinearity, 14 (2001), 583-596.  doi: 10.1088/0951-7715/14/3/308.

[8]

A. Avila and J. Bochi, Nonuniform hyperbolicity, global dominated splittings and generic properties of volume-preserving diffeomorphisms, Trans. Amer. Math. Soc., 364 (2012), 2883-2907.  doi: 10.1090/S0002-9947-2012-05423-7.

[9]

L. Barreira and Y. B. Pesin, Lyapunov Exponents and Smooth Ergodic Theory, Univ. Lect. Ser., 23. American Mathematical Society, Providence RI, 2002.

[10]

C. Bonatti, L. J. Díaz and M. Viana, Dynamics Beyond Uniform Hyperbolicity, A Global Geometric and Probabilistic Perspective, Encyclopaedia of Math Sci., 102. Mathematical Physics, Ⅲ. Springer-Verlag, Berlin, 2005.

[11]

C. Bonatti and M. Viana, SRB measures for partially hyperbolic systems whose central direction is mostly contracting, Israel J. Math., 115 (2000), 157-193.  doi: 10.1007/BF02810585.

[12]

R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, , Lecture Notes in Mathematics, Vol. 470. Springer-Verlag, Berlin-New York, 1975.

[13]

R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows, Invent. Math., 29 (1975), 181-202. 

[14]

Y. L. Cao and D. W. Yang, On pesin's entropy formula for dominated splittings without mixed behavior, J. Differ. Equ., 261 (2016), 3964-3986.  doi: 10.1016/j.jde.2016.06.012.

[15]

W. Cowieson and L.-S. Young, SRB measures as zero-noise limits, Ergod. Th. & Dynam. Sys., 25 (2005), 1115-1138.  doi: 10.1017/S0143385704000604.

[16]

J.-P. Eckmann and D. Ruelle, Ergodic theory of chaos and strange attractors, Rev. Modern Phys., 57 (1985), 617-656.  doi: 10.1103/RevModPhys.57.617.

[17]

M. W. Hirsch and C. C. Pugh, Stable manifolds and hyperbolic sets, in Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), (1970), 133–163.

[18]

M. W. Hirsch, C. C. Pugh and M. Shub, Invariant Manifolds, Lecture Notes in Mathematics, Vol. 583. Springer-Verlag, Berlin-New York, 1977.

[19]

F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms Part Ⅰ: Characterization of measures satisfying Pesin's entropy formula, Ann. Math., 122 (1985), 509-539.  doi: 10.2307/1971328.

[20]

F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms: Part Ⅱ: Characterization of measures satisfying Pesin's entropy formula, Ann. Math., 122 (1985), 540-574.  doi: 10.2307/1971329.

[21]

P.-D Liu and M. Qian, Smooth Ergodic Theory of Random Dynamical Systems, Lecture Notes in Mathematics, 1606. Springer-Verlag, Berlin, 1995. doi: 10.1007/BFb0094308.

[22]

P.-D. Liu and K. N. Lu, A Note on partially hyperbolic attractors: Entropy conjecture and SRB measures, Discrete Contin. Dyn. Syst., 35 (2015), 341-352.  doi: 10.3934/dcds.2015.35.341.

[23]

R. Mañé, Ergodic Theory and Differentiable Dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 8. Springer-Verlag, 1987. doi: 10.1007/978-3-642-70335-5.

[24]

Z. Y. MiY. L. Cao and D. W. Yang, SRB measures for attractors with continuous invariant splittings, Math. Z., 288 (2018), 135-165.  doi: 10.1007/s00209-017-1883-2.

[25]

Z. Y. MiY. L. Cao and D. W. Yang, A note on partially hyperbolic systems with mostly expanding centers, Proc. Amer. Math. Soc., 145 (2017), 5299-5313.  doi: 10.1090/proc/13701.

[26]

J. Palis, A global view of Dynamics and a conjecture on the denseness of finitude of attractors, Astérisque, 261 (1999), 339-351. 

[27]

Y. B. Pesin and Y. G. Sinaĭ, Gibbs measures for partially hyperbolic attractors, Ergod. Th. & Dynam. Sys., 2 (1982), 417-438.  doi: 10.1017/S014338570000170X.

[28]

V. A. Rokhlin, On the fundamental ideas of measure theorey, A. M. S. Translations, 1952 (1952), 55 pp.

[29]

D. Ruelle, A measure associated with Axiom-A attractors, Amer. J. Math., 98 (1976), 619-654.  doi: 10.2307/2373810.

[30]

J. G. Sinaĭ, Gibbs measures in ergodic theory, Uspehi Mat. Nauk, 27 (1972), 21-64. 

[31]

C. H. Vásquez, Statistical stability for diffeomorphisms with dominated splitting, Ergod. Th. & Dynam. Sys., 27 (2007), 253-283.  doi: 10.1017/S0143385706000721.

[32]

M. Viana, Stochastic Dynamics of Deterministic Systems, Lect. Notes XXI Braz. Math Colloq., IMPA, 1997.

[33]

M. Viana, Dynamics: A probabilistic and geometric perspective, Proceedings of the International Congress of Mathematicians (Berlin, 1998), Doc. Math., 1 (1998), 557–578.

[34]

M. Viana, Lecture Notes on Attractors and Physical Measures, Instituto de Matemática y Ciencias Afines, IMCA, Lima, 1999.

[35]

Y. Kifer, Ergodic Theory of Random Transformations, Progress in Probability and Statistics, 10. Birkhäuser Boston, Inc., Boston, MA, 1986. doi: 10.1007/978-1-4684-9175-3.

[36] M. Viana and K. Oliveira, Foundations of Ergodic Theory, Cambridge Studies in Advanced Mathematics, 151. Cambridge University Press, Cambridge, 2016.  doi: 10.1017/CBO9781316422601.
[37]

L.-S. Young, What are SRB measures, and which dynamical systems have them?, J. Statist. Phys., 108 (2002), 733-754.  doi: 10.1023/A:1019762724717.

[38]

Y. T. ZangD. W. Yang and Y. L. Cao, The entropy conjecture for dominated splitting with multi 1D centers via upper semi-continuity of the metric entropy, Nonlinearity, 30 (2017), 3076-3087.  doi: 10.1088/1361-6544/aa773c.

show all references

References:
[1]

J. F. AlvesV. Araújo and C. H. Vásquez, Stochastic stability of non-uniformly hyperbolic diffeomorphisms, Stochastics and Dynamics, 7 (2007), 299-333.  doi: 10.1142/S0219493707002049.

[2]

J. F. AlvesC. Bonatti and M. Viana, SRB measures for partially hyperbolic systems whose central direction is mostly expanding, Invent. Math., 140 (2000), 351-398.  doi: 10.1007/s002220000057.

[3]

J. F. AlvesC. L. DiasS. Luzzatto and V. Pinheiro, SRB measures for partially hyperbolic systems whose central direction is weakly expanding, J. Eur. Math. Soc. (JEMS), 19 (2017), 2911-2946.  doi: 10.4171/JEMS/731.

[4]

J. F. Alves, Statistical Analysis of Non-Uniformly Expanding Dynamical Systems, IMPA, Rio De Janeiro, 2003.

[5]

M. Andersson and C. H. Vásquez, On mostly expanding diffeomorphisms, Ergodic Theory Dynam. Systems, 38 (2018), 2838-2859.  doi: 10.1017/etds.2017.17.

[6]

V. Araújo, Attractors and time averages for random maps, Ann. Inst. H. Poincar Anal. Non Linaire., 17 (2000), 307-369.  doi: 10.1016/S0294-1449(00)00112-8.

[7]

V. Araújo, Infinitely many stochastically stable attractors, Nonlinearity, 14 (2001), 583-596.  doi: 10.1088/0951-7715/14/3/308.

[8]

A. Avila and J. Bochi, Nonuniform hyperbolicity, global dominated splittings and generic properties of volume-preserving diffeomorphisms, Trans. Amer. Math. Soc., 364 (2012), 2883-2907.  doi: 10.1090/S0002-9947-2012-05423-7.

[9]

L. Barreira and Y. B. Pesin, Lyapunov Exponents and Smooth Ergodic Theory, Univ. Lect. Ser., 23. American Mathematical Society, Providence RI, 2002.

[10]

C. Bonatti, L. J. Díaz and M. Viana, Dynamics Beyond Uniform Hyperbolicity, A Global Geometric and Probabilistic Perspective, Encyclopaedia of Math Sci., 102. Mathematical Physics, Ⅲ. Springer-Verlag, Berlin, 2005.

[11]

C. Bonatti and M. Viana, SRB measures for partially hyperbolic systems whose central direction is mostly contracting, Israel J. Math., 115 (2000), 157-193.  doi: 10.1007/BF02810585.

[12]

R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, , Lecture Notes in Mathematics, Vol. 470. Springer-Verlag, Berlin-New York, 1975.

[13]

R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows, Invent. Math., 29 (1975), 181-202. 

[14]

Y. L. Cao and D. W. Yang, On pesin's entropy formula for dominated splittings without mixed behavior, J. Differ. Equ., 261 (2016), 3964-3986.  doi: 10.1016/j.jde.2016.06.012.

[15]

W. Cowieson and L.-S. Young, SRB measures as zero-noise limits, Ergod. Th. & Dynam. Sys., 25 (2005), 1115-1138.  doi: 10.1017/S0143385704000604.

[16]

J.-P. Eckmann and D. Ruelle, Ergodic theory of chaos and strange attractors, Rev. Modern Phys., 57 (1985), 617-656.  doi: 10.1103/RevModPhys.57.617.

[17]

M. W. Hirsch and C. C. Pugh, Stable manifolds and hyperbolic sets, in Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), (1970), 133–163.

[18]

M. W. Hirsch, C. C. Pugh and M. Shub, Invariant Manifolds, Lecture Notes in Mathematics, Vol. 583. Springer-Verlag, Berlin-New York, 1977.

[19]

F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms Part Ⅰ: Characterization of measures satisfying Pesin's entropy formula, Ann. Math., 122 (1985), 509-539.  doi: 10.2307/1971328.

[20]

F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms: Part Ⅱ: Characterization of measures satisfying Pesin's entropy formula, Ann. Math., 122 (1985), 540-574.  doi: 10.2307/1971329.

[21]

P.-D Liu and M. Qian, Smooth Ergodic Theory of Random Dynamical Systems, Lecture Notes in Mathematics, 1606. Springer-Verlag, Berlin, 1995. doi: 10.1007/BFb0094308.

[22]

P.-D. Liu and K. N. Lu, A Note on partially hyperbolic attractors: Entropy conjecture and SRB measures, Discrete Contin. Dyn. Syst., 35 (2015), 341-352.  doi: 10.3934/dcds.2015.35.341.

[23]

R. Mañé, Ergodic Theory and Differentiable Dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 8. Springer-Verlag, 1987. doi: 10.1007/978-3-642-70335-5.

[24]

Z. Y. MiY. L. Cao and D. W. Yang, SRB measures for attractors with continuous invariant splittings, Math. Z., 288 (2018), 135-165.  doi: 10.1007/s00209-017-1883-2.

[25]

Z. Y. MiY. L. Cao and D. W. Yang, A note on partially hyperbolic systems with mostly expanding centers, Proc. Amer. Math. Soc., 145 (2017), 5299-5313.  doi: 10.1090/proc/13701.

[26]

J. Palis, A global view of Dynamics and a conjecture on the denseness of finitude of attractors, Astérisque, 261 (1999), 339-351. 

[27]

Y. B. Pesin and Y. G. Sinaĭ, Gibbs measures for partially hyperbolic attractors, Ergod. Th. & Dynam. Sys., 2 (1982), 417-438.  doi: 10.1017/S014338570000170X.

[28]

V. A. Rokhlin, On the fundamental ideas of measure theorey, A. M. S. Translations, 1952 (1952), 55 pp.

[29]

D. Ruelle, A measure associated with Axiom-A attractors, Amer. J. Math., 98 (1976), 619-654.  doi: 10.2307/2373810.

[30]

J. G. Sinaĭ, Gibbs measures in ergodic theory, Uspehi Mat. Nauk, 27 (1972), 21-64. 

[31]

C. H. Vásquez, Statistical stability for diffeomorphisms with dominated splitting, Ergod. Th. & Dynam. Sys., 27 (2007), 253-283.  doi: 10.1017/S0143385706000721.

[32]

M. Viana, Stochastic Dynamics of Deterministic Systems, Lect. Notes XXI Braz. Math Colloq., IMPA, 1997.

[33]

M. Viana, Dynamics: A probabilistic and geometric perspective, Proceedings of the International Congress of Mathematicians (Berlin, 1998), Doc. Math., 1 (1998), 557–578.

[34]

M. Viana, Lecture Notes on Attractors and Physical Measures, Instituto de Matemática y Ciencias Afines, IMCA, Lima, 1999.

[35]

Y. Kifer, Ergodic Theory of Random Transformations, Progress in Probability and Statistics, 10. Birkhäuser Boston, Inc., Boston, MA, 1986. doi: 10.1007/978-1-4684-9175-3.

[36] M. Viana and K. Oliveira, Foundations of Ergodic Theory, Cambridge Studies in Advanced Mathematics, 151. Cambridge University Press, Cambridge, 2016.  doi: 10.1017/CBO9781316422601.
[37]

L.-S. Young, What are SRB measures, and which dynamical systems have them?, J. Statist. Phys., 108 (2002), 733-754.  doi: 10.1023/A:1019762724717.

[38]

Y. T. ZangD. W. Yang and Y. L. Cao, The entropy conjecture for dominated splitting with multi 1D centers via upper semi-continuity of the metric entropy, Nonlinearity, 30 (2017), 3076-3087.  doi: 10.1088/1361-6544/aa773c.

[1]

Peidong Liu, Kening Lu. A note on partially hyperbolic attractors: Entropy conjecture and SRB measures. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 341-352. doi: 10.3934/dcds.2015.35.341

[2]

Zeng Lian, Peidong Liu, Kening Lu. Existence of SRB measures for a class of partially hyperbolic attractors in banach spaces. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3905-3920. doi: 10.3934/dcds.2017164

[3]

Huyi Hu, Miaohua Jiang, Yunping Jiang. Infimum of the metric entropy of hyperbolic attractors with respect to the SRB measure. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 215-234. doi: 10.3934/dcds.2008.22.215

[4]

Pengfei Zhang. Partially hyperbolic sets with positive measure and $ACIP$ for partially hyperbolic systems. Discrete and Continuous Dynamical Systems, 2012, 32 (4) : 1435-1447. doi: 10.3934/dcds.2012.32.1435

[5]

Yujun Zhu. Topological quasi-stability of partially hyperbolic diffeomorphisms under random perturbations. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 869-882. doi: 10.3934/dcds.2014.34.869

[6]

Dominic Veconi. SRB measures of singular hyperbolic attractors. Discrete and Continuous Dynamical Systems, 2022, 42 (7) : 3415-3430. doi: 10.3934/dcds.2022020

[7]

Dante Carrasco-Olivera, Bernardo San Martín. Robust attractors without dominated splitting on manifolds with boundary. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4555-4563. doi: 10.3934/dcds.2014.34.4555

[8]

Eleonora Catsigeras, Xueting Tian. Dominated splitting, partial hyperbolicity and positive entropy. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4739-4759. doi: 10.3934/dcds.2016006

[9]

Wenxiang Sun, Xueting Tian. Dominated splitting and Pesin's entropy formula. Discrete and Continuous Dynamical Systems, 2012, 32 (4) : 1421-1434. doi: 10.3934/dcds.2012.32.1421

[10]

Zhihui Yuan. Multifractal analysis of random weak Gibbs measures. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5367-5405. doi: 10.3934/dcds.2017234

[11]

David Parmenter, Mark Pollicott. Gibbs measures for hyperbolic attractors defined by densities. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022038

[12]

Eleonora Catsigeras, Heber Enrich. SRB measures of certain almost hyperbolic diffeomorphisms with a tangency. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 177-202. doi: 10.3934/dcds.2001.7.177

[13]

Xinsheng Wang, Weisheng Wu, Yujun Zhu. Local unstable entropy and local unstable pressure for random partially hyperbolic dynamical systems. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 81-105. doi: 10.3934/dcds.2020004

[14]

Xinsheng Wang, Lin Wang, Yujun Zhu. Formula of entropy along unstable foliations for $C^1$ diffeomorphisms with dominated splitting. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 2125-2140. doi: 10.3934/dcds.2018087

[15]

Pedro Duarte, Silvius Klein. Topological obstructions to dominated splitting for ergodic translations on the higher dimensional torus. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5379-5387. doi: 10.3934/dcds.2018237

[16]

Eugen Mihailescu. Approximations for Gibbs states of arbitrary Hölder potentials on hyperbolic folded sets. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 961-975. doi: 10.3934/dcds.2012.32.961

[17]

Zhicong Liu. SRB attractors with intermingled basins for non-hyperbolic diffeomorphisms. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1545-1562. doi: 10.3934/dcds.2013.33.1545

[18]

Rafael Potrie. Partially hyperbolic diffeomorphisms with a trapping property. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 5037-5054. doi: 10.3934/dcds.2015.35.5037

[19]

Lorenzo J. Díaz, Todd Fisher. Symbolic extensions and partially hyperbolic diffeomorphisms. Discrete and Continuous Dynamical Systems, 2011, 29 (4) : 1419-1441. doi: 10.3934/dcds.2011.29.1419

[20]

Zhenqi Jenny Wang. Local rigidity of partially hyperbolic actions. Journal of Modern Dynamics, 2010, 4 (2) : 271-327. doi: 10.3934/jmd.2010.4.271

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (214)
  • HTML views (122)
  • Cited by (0)

Other articles
by authors

[Back to Top]