
-
Previous Article
Positive ground state solutions for fractional Laplacian system with one critical exponent and one subcritical exponent
- DCDS Home
- This Issue
-
Next Article
On the Gevrey regularity of solutions to the 3D ideal MHD equations
An algebraic approach to entropy plateaus in non-integer base expansions
Mathematics Department, University of North Texas, 1155 Union Cir #311430, Denton, TX 76203-5017, USA |
For a positive integer $ M $ and a real base $ q\in(1, M+1] $, let $ {\mathcal{U}}_q $ denote the set of numbers having a unique expansion in base $ q $ over the alphabet $ \{0, 1, \dots, M\} $, and let $ \mathbf{U}_q $ denote the corresponding set of sequences in $ \{0, 1, \dots, M\}^ {\mathbb{N}} $. Komornik et al. [ Adv. Math. 305 (2017), 165–196] showed recently that the Hausdorff dimension of $ {\mathcal{U}}_q $ is given by $ h(\mathbf{U}_q)/\log q $, where $ h(\mathbf{U}_q) $ denotes the topological entropy of $ \mathbf{U}_q $. They furthermore showed that the function $ H: q\mapsto h(\mathbf{U}_q) $ is continuous, nondecreasing and locally constant almost everywhere. The plateaus of $ H $ were characterized by Alcaraz Barrera et al. [ Trans. Amer. Math. Soc., 371 (2019), 3209–3258]. In this article we reinterpret the results of Alcaraz Barrera et al. by introducing a notion of composition of fundamental words, and use this to obtain new information about the structure of the function $ H $. This method furthermore leads to a more streamlined proof of their main theorem.
References:
[1] |
R. Alcaraz Barrera,
Topological and ergodic properties of symmetric sub-shifts, Discrete Contin. Dyn. Syst., 34 (2014), 4459-4486.
doi: 10.3934/dcds.2014.34.4459. |
[2] |
R. Alcaraz Barrera, S. Baker and D. Kong,
Entropy, topological transitivity, and dimensional properties of unique $q$-expansions, Trans. Amer. Math. Soc., 371 (2019), 3209-3258.
doi: 10.1090/tran/7370. |
[3] |
P. Allaart, S. Baker and D. Kong, Bifurcation sets arising from non-integer base expansions, in J. Fractal Geom., (2018), arXiv: 1706.05190. Google Scholar |
[4] |
P. Allaart and D. Kong, On the continuity of the Hausdorff dimension of the univoque set, Advances in Mathematics, 354 (2019), 106729, arXiv: 1804.02879.
doi: 10.1016/j.aim.2019.106729. |
[5] |
P. Allaart and D. Kong, Relative bifurcation sets and the local dimension of univoque bases, preprint, 2018, arXiv: 1809.00323. Google Scholar |
[6] |
S. Baker, Generalized golden ratios over integer alphabets, Integers, 14 (2014), 28 pp. |
[7] |
M. de Vries and V. Komornik,
Unique expansions of real numbers, Adv. Math., 221 (2009), 390-427.
doi: 10.1016/j.aim.2008.12.008. |
[8] |
P. Erdős, M. Horváth and I. Joó,
On the uniqueness of the expansions $1=\sum q^{-n_i}$, Acta Math. Hungar., 58 (1991), 333-342.
doi: 10.1007/BF01903963. |
[9] |
P. Erdős and I. Joó,
On the number of expansions $1=\sum q^{-n_i}$, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 35 (1992), 129-132.
|
[10] |
P. Erdős, I. Joó and V. Komornik,
Characterization of the unique expansions $1=\sum_{i=1}^\infty q^{-n_i}$ and related problems, Bull. Soc. Math. France, 118 (1990), 377-390.
doi: 10.24033/bsmf.2151. |
[11] |
P. Glendinning and T. Hall,
Zeros of the kneading invariant and topological entropy for Lorenz maps, Nonlinearity, 9 (1996), 999-1014.
doi: 10.1088/0951-7715/9/4/010. |
[12] |
P. Glendinning and N. Sidorov,
Unique representations of real numbers in non-integer bases, Math. Res. Lett., 8 (2001), 535-543.
doi: 10.4310/MRL.2001.v8.n4.a12. |
[13] |
V. Komornik, D. Kong and W. X. Li,
Hausdorff dimension of univoque sets and devil's staircase, Adv. Math., 305 (2017), 165-196.
doi: 10.1016/j.aim.2016.03.047. |
[14] |
V. Komornik and P. Loreti,
Unique developments in non-integer bases, Amer. Math. Monthly, 105 (1998), 636-639.
doi: 10.1080/00029890.1998.12004937. |
[15] |
V. Komornik and P. Loreti,
Subexpansions, superexpansions and uniqueness properties in non-integer bases, Period. Math. Hungar., 44 (2002), 197-218.
doi: 10.1023/A:1019696514372. |
[16] |
D. Kong and W. X. Li,
Hausdorff dimension of unique beta expansions, Nonlinearity, 28 (2015), 187-209.
doi: 10.1088/0951-7715/28/1/187. |
[17] |
D. Kong, W. X. Li and F. M. Dekking,
Intersections of homogeneous Cantor sets and beta-expansions, Nonlinearity, 23 (2010), 2815-2834.
doi: 10.1088/0951-7715/23/11/005. |
[18] |
D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511626302.![]() ![]() |
[19] |
W. Parry,
On the $\beta$-expansions of real numbers, Acta Math. Acad. Sci. Hungar., 11 (1960), 401-416.
doi: 10.1007/BF02020954. |
[20] |
A. Rényi,
Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar., 8 (1957), 477-493.
doi: 10.1007/BF02020331. |
show all references
References:
[1] |
R. Alcaraz Barrera,
Topological and ergodic properties of symmetric sub-shifts, Discrete Contin. Dyn. Syst., 34 (2014), 4459-4486.
doi: 10.3934/dcds.2014.34.4459. |
[2] |
R. Alcaraz Barrera, S. Baker and D. Kong,
Entropy, topological transitivity, and dimensional properties of unique $q$-expansions, Trans. Amer. Math. Soc., 371 (2019), 3209-3258.
doi: 10.1090/tran/7370. |
[3] |
P. Allaart, S. Baker and D. Kong, Bifurcation sets arising from non-integer base expansions, in J. Fractal Geom., (2018), arXiv: 1706.05190. Google Scholar |
[4] |
P. Allaart and D. Kong, On the continuity of the Hausdorff dimension of the univoque set, Advances in Mathematics, 354 (2019), 106729, arXiv: 1804.02879.
doi: 10.1016/j.aim.2019.106729. |
[5] |
P. Allaart and D. Kong, Relative bifurcation sets and the local dimension of univoque bases, preprint, 2018, arXiv: 1809.00323. Google Scholar |
[6] |
S. Baker, Generalized golden ratios over integer alphabets, Integers, 14 (2014), 28 pp. |
[7] |
M. de Vries and V. Komornik,
Unique expansions of real numbers, Adv. Math., 221 (2009), 390-427.
doi: 10.1016/j.aim.2008.12.008. |
[8] |
P. Erdős, M. Horváth and I. Joó,
On the uniqueness of the expansions $1=\sum q^{-n_i}$, Acta Math. Hungar., 58 (1991), 333-342.
doi: 10.1007/BF01903963. |
[9] |
P. Erdős and I. Joó,
On the number of expansions $1=\sum q^{-n_i}$, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 35 (1992), 129-132.
|
[10] |
P. Erdős, I. Joó and V. Komornik,
Characterization of the unique expansions $1=\sum_{i=1}^\infty q^{-n_i}$ and related problems, Bull. Soc. Math. France, 118 (1990), 377-390.
doi: 10.24033/bsmf.2151. |
[11] |
P. Glendinning and T. Hall,
Zeros of the kneading invariant and topological entropy for Lorenz maps, Nonlinearity, 9 (1996), 999-1014.
doi: 10.1088/0951-7715/9/4/010. |
[12] |
P. Glendinning and N. Sidorov,
Unique representations of real numbers in non-integer bases, Math. Res. Lett., 8 (2001), 535-543.
doi: 10.4310/MRL.2001.v8.n4.a12. |
[13] |
V. Komornik, D. Kong and W. X. Li,
Hausdorff dimension of univoque sets and devil's staircase, Adv. Math., 305 (2017), 165-196.
doi: 10.1016/j.aim.2016.03.047. |
[14] |
V. Komornik and P. Loreti,
Unique developments in non-integer bases, Amer. Math. Monthly, 105 (1998), 636-639.
doi: 10.1080/00029890.1998.12004937. |
[15] |
V. Komornik and P. Loreti,
Subexpansions, superexpansions and uniqueness properties in non-integer bases, Period. Math. Hungar., 44 (2002), 197-218.
doi: 10.1023/A:1019696514372. |
[16] |
D. Kong and W. X. Li,
Hausdorff dimension of unique beta expansions, Nonlinearity, 28 (2015), 187-209.
doi: 10.1088/0951-7715/28/1/187. |
[17] |
D. Kong, W. X. Li and F. M. Dekking,
Intersections of homogeneous Cantor sets and beta-expansions, Nonlinearity, 23 (2010), 2815-2834.
doi: 10.1088/0951-7715/23/11/005. |
[18] |
D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511626302.![]() ![]() |
[19] |
W. Parry,
On the $\beta$-expansions of real numbers, Acta Math. Acad. Sci. Hungar., 11 (1960), 401-416.
doi: 10.1007/BF02020954. |
[20] |
A. Rényi,
Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar., 8 (1957), 477-493.
doi: 10.1007/BF02020331. |

[1] |
Timothy Chumley, Renato Feres. Entropy production in random billiards. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1319-1346. doi: 10.3934/dcds.2020319 |
[2] |
Bing Gao, Rui Gao. On fair entropy of the tent family. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021017 |
[3] |
Yunping Jiang. Global graph of metric entropy on expanding Blaschke products. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1469-1482. doi: 10.3934/dcds.2020325 |
[4] |
Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217 |
[5] |
Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266 |
[6] |
Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267 |
[7] |
Magdalena Foryś-Krawiec, Jiří Kupka, Piotr Oprocha, Xueting Tian. On entropy of $ \Phi $-irregular and $ \Phi $-level sets in maps with the shadowing property. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1271-1296. doi: 10.3934/dcds.2020317 |
[8] |
Shanding Xu, Longjiang Qu, Xiwang Cao. Three classes of partitioned difference families and their optimal constant composition codes. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020120 |
[9] |
Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137 |
[10] |
Álvaro Castañeda, Pablo González, Gonzalo Robledo. Topological Equivalence of nonautonomous difference equations with a family of dichotomies on the half line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020278 |
[11] |
Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 501-514. doi: 10.3934/dcdsb.2020350 |
[12] |
Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127 |
[13] |
Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020169 |
[14] |
Sumit Kumar Debnath, Pantelimon Stǎnicǎ, Nibedita Kundu, Tanmay Choudhury. Secure and efficient multiparty private set intersection cardinality. Advances in Mathematics of Communications, 2021, 15 (2) : 365-386. doi: 10.3934/amc.2020071 |
[15] |
Divine Wanduku. Finite- and multi-dimensional state representations and some fundamental asymptotic properties of a family of nonlinear multi-population models for HIV/AIDS with ART treatment and distributed delays. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021005 |
[16] |
Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102 |
[17] |
Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020164 |
[18] |
Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073 |
[19] |
Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020162 |
[20] |
Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]