We consider $ C^2 $ vector fields in the three dimensional sphere with an attracting heteroclinic cycle between two periodic hyperbolic solutions with real Floquet multipliers. The proper basin of this attracting set exhibits historic behavior and from the asymptotic properties of its orbits we obtain a complete set of invariants under topological conjugacy in a neighborhood of the cycle. As expected, this set contains the periods of the orbits involved in the cycle, a combination of their angular speeds, the rates of expansion and contraction in linearizing neighborhoods of them, besides information regarding the transition maps and the transition times between these neighborhoods. We conclude with an application of this result to a class of cycles obtained by the lifting of an example of R. Bowen.
Citation: |
[1] | M. A. D. Aguiar, S. B. S. D. Castro and I. S. Labouriau, Simple vector fields with complex behavior, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 16 (2006), 369-381. doi: 10.1142/S021812740601485X. |
[2] | V. Arnold, V. Afraimovich, Y. Ilyashenko and L. P. Shilnikov, Bifurcation Theory and Catastrophe Theory, Encyclopaedia of Mathematical Sciences, 5. V. I. Arnold (ed.), Springer-Verlag, Berlin, 1994. |
[3] | J. A. Beloqui, Modulus of stability for vector fields on 3-manifolds, J. Differential Equations, 65 (1986), 374-395. doi: 10.1016/0022-0396(86)90025-2. |
[4] | C. Bonatti and E. Dufraine, Éuivalence topologique de connexions de selles en dimension 3, (French) [Topological equivalence of connections between 3-dimensional saddles], Ergodic Theory Dynam. Systems, 23 (2003), 1347-1381. doi: 10.1017/S0143385703000130. |
[5] | M. Carvalho and A. P. Rodrigues, Complete set of invariants for a Bykov attractor, Regul. Chaotic. Dyn., 23 (2018), 227-247. doi: 10.1134/S1560354718030012. |
[6] | P. Chossat, M. Golubitsky and B. L. Keyfitz, Hopf-Hopf mode interactions with O(2) symmetry, Dynam. Stability Systems, 1 (1986), 255-292. doi: 10.1080/02681118608806019. |
[7] | E. Dufraine, Some topological invariants for three-dimensional flows, Chaos, 11 (2011), 443-448. doi: 10.1063/1.1385918. |
[8] | M. J. Field, Equivariant dynamical systems, Trans. Amer. Math. Soc., 259 (1980), 185-205. doi: 10.1090/S0002-9947-1980-0561832-4. |
[9] | M. Krupa and I. Melbourne, Asymptotic stability of heteroclinic cycles in systems with symmetry, Ergodic Theory Dynam. Systems, 15 (1995), 121-147. doi: 10.1017/S0143385700008270. |
[10] | M. Krupa and I. Melbourne, Asymptotic stability of heteroclinic cycles in systems with symmetry. II, Proc. Roy. Soc. Edinburg Sect. A, 134 (2004), 1177-1197. doi: 10.1017/S0308210500003693. |
[11] | I. S. Labouriau and A. A. P. Rodrigues, Dense heteroclinic tangencies near a Bykov cycle, J. Differential Equations, 259 (2015), 5875-5902. doi: 10.1016/j.jde.2015.07.017. |
[12] | I. S. Labouriau and A. A. P. Rodrigues, On Takens' last problem: Tangencies and time averages near heteroclinic networks, Nonlinearity, 30 (2017), 1876-1910. doi: 10.1088/1361-6544/aa64e9. |
[13] | I. Melbourne, Intermittency as a codimension-three phenomenon, J. Dynam. Differential Equations, 1 (1989), 347-367. doi: 10.1007/BF01048454. |
[14] | J. Palis, A differentiable invariant of topological conjugacies and moduli of stability, Astérisque, 51 (1987), 335-346. |
[15] | A. A. P. Rodrigues, Moduli for heteroclinic connections involving Saddle-Foci and periodic solutions, Discrete Continuous Dynam. Systems, 35 (2015), 3155-3182. doi: 10.3934/dcds.2015.35.3155. |
[16] | A. A. P. Rodrigues, I. S. Labouriau and M. A. D. Aguiar, Chaotic double cycling, Dynamical Systems: An International Journal., 26 (2011), 199-233. doi: 10.1080/14689367.2011.557179. |
[17] | D. Ruelle, Historic behaviour in smooth dynamical systems, Global Analysis of Dynamical Systems, Institute of Physics Publishing, Bristol, (2001), 63–66. |
[18] | A. Susín and C. Simó, On moduli of conjugation for some n-dimensional vector fields, J. Differential Equations, 79 (1989), 168-177. doi: 10.1016/0022-0396(89)90118-6. |
[19] | F. Takens, Partially hyperbolic fixed points, Topology, 10 (1971), 133-147. doi: 10.1016/0040-9383(71)90035-8. |
[20] | F. Takens, Heteroclinic attractors: Time averages and moduli of topological conjugacy, Bol. Soc. Brasil. Mat. (N.S.), 25 (1994), 107-120. doi: 10.1007/BF01232938. |
[21] | Y. Togawa, A modulus of 3-dimensional vector fields, Ergodic Theory Dynam. Systems, 7 (1987), 295-301. doi: 10.1017/S0143385700004028. |
[22] | W. J. Zhang, B. Krauskopf and V. Kirk, How to find a codimension-one heteroclinic cycle between two periodic orbits, Discrete Continuous Dynam. Systems, 32 (2012), 2825-2851. doi: 10.3934/dcds.2012.32.2825. |
Local data near a periodic solution
Linear components of the global maps
Scheme for the global transition
Phase diagram of (23)
Bowen's example (24) with
Illustration of the properties that are conveyed from (25) to its lifting (26)