In this paper the geodesic flow on the 2-torus in a non-zero magnetic field is considered. Suppose that this flow admits an additional first integral $ F $ on $ N+2 $ different energy levels which is polynomial in momenta of an arbitrary degree $ N $ with analytic periodic coefficients. It is proved that in this case the magnetic field and the metric are functions of one variable and there exists a linear in momenta first integral on all energy levels.
Citation: |
[1] |
S. V. Agapov and D. N. Aleksandrov, Fourth-degree polynomial integrals of a natural mechanical system on a two-dimensional torus, Math. Notes, 93 (2013), 780-783.
doi: 10.1134/S0001434613050155.![]() ![]() ![]() |
[2] |
S. V. Agapov, M. Bialy and A. E. Mironov, Integrable magnetic geodesic flows on 2-torus: New examples via quasi-linear system of PDEs, Comm. Math. Phys., 351 (2017), 993-1007.
doi: 10.1007/s00220-016-2822-5.![]() ![]() ![]() |
[3] |
doi: 10.1007/BF01077805.![]() ![]() ![]() |
[4] |
M. L. Bialy, Rigidity for periodic magnetic fields, Theor. Dyn. Syst., 20 (2000), 1619-1626.
doi: 10.1017/S0143385700000894.![]() ![]() ![]() |
[5] |
M. Bialy and A. E. Mironov, Rich quasi-linear system for integrable geodesic flow on 2-torus, Discrete Continuous Dynam. Systems-A, 29 (2011), 81-90.
doi: 10.3934/dcds.2011.29.81.![]() ![]() ![]() |
[6] |
M. L. Bialy and A. E. Mironov, Integrable geodesic flows on 2-torus: Formal solutions and variational principle, Journal of Geometry and Physics, 87 (2015), 39-47.
doi: 10.1016/j.geomphys.2014.08.006.![]() ![]() ![]() |
[7] |
M. Bialy and A. E. Mironov, Cubic and quartic integrals for geodesic flow on 2-torus via a system of the hydrodynamic type, Nonlinearity, 24 (2011), 3541-3554.
doi: 10.1088/0951-7715/24/12/010.![]() ![]() ![]() |
[8] |
M. Bialy and A. Mironov, New semi-Hamiltonian hierarchy related to integrable magnetic flows on surfaces, Cent. Eur. J. Math., 10 (2012), 1596-1604.
doi: 10.2478/s11533-012-0045-3.![]() ![]() ![]() |
[9] |
S. V. Bolotin, First integrals of systems with gyroscopic forces, Vestn. Mosk. U. Mat. M., (1984), 75–82,113.
![]() ![]() |
[10] |
A. V. Bolsinov, V. V. Kozlov and A. T. Fomenko, The Maupertuis principle and geodesic flows on a sphere arising from integrable cases in the dynamics of a rigid body, Russian Math. Surveys, 50 (1995), 473-501.
doi: 10.1070/RM1995v050n03ABEH002100.![]() ![]() ![]() |
[11] |
A. V. Bolsinov and B. Jovanović, Magnetic geodesic flows on coadjoint orbits, J. Phys. A-Math, 39 (2006), L247–L252.
doi: 10.1088/0305-4470/39/16/L01.![]() ![]() ![]() |
[12] |
K. Burns and V. S. Matveev, On the rigidity of magnetic systems with the same magnetic geodesics, P. Am. Math. Soc., 134 (2006), 427–434. Available from: http://www.ams.org/journals/proc/2006-134-02/S0002-9939-05-08196-7/S0002-9939-05-08196-7.pdf.
doi: 10.1090/S0002-9939-05-08196-7.![]() ![]() ![]() |
[13] |
N. V. Denisova and V. V. Kozlov, Polynomial integrals of reversible mechanical systems with a two-dimensional torus as the configuration space, Russian Acad. Sci. Sb. Math., 191 (2000), 189-208.
doi: 10.1070/SM2000v191n02ABEH000452.![]() ![]() ![]() |
[14] |
N. V. Denisova, V. V. Kozlov and D. V. Treschëv, Remarks on polynomial integrals of higher degrees for reversible systems with toral configuration space, Izv. Math., 76 (2012), 907-921.
doi: 10.1070/IM2012v076n05ABEH002609.![]() ![]() ![]() |
[15] |
B. Dorizzi, B. Grammaticos, A. Ramani and P. Winternitz, Integrable Hamiltonian systems with velocity-dependent potentials, J. Math. Phys., 26 (1985), 3070-3079.
doi: 10.1063/1.526685.![]() ![]() ![]() |
[16] |
D. I. Efimov, The magnetic geodesic flow in a homogeneous field on the complex projective space, Siberian Math. J., 45 (2004), 465-474.
doi: 10.1023/B:SIMJ.0000028611.65071.bd.![]() ![]() ![]() |
[17] |
D. I. Efimov, The magnetic geodesic flow on a homogeneous symplectic manifold, Siberian Math. J., 46 (2005), 83-93.
doi: 10.1007/s11202-005-0009-y.![]() ![]() ![]() |
[18] |
V. N. Kolokol'tsov, Geodesic flows on two-dimensional manifolds with an additional first integral that is polynomial in the velocities, Math. USSR Izv., 21 (1983), 291-306.
doi: 10.1070/IM1983v021n02ABEH001792.![]() ![]() |
[19] |
V. V. Kozlov, Topological obstacles to the integrability of natural mechanical systems, Dokl. Akad. Nauk SSSR, 249 (1979), 1299-1302.
![]() ![]() |
[20] |
V. V. Kozlov, Symmetries, Topology, and Resonances in Hamiltonian Mechanics, Izdatel'stvo Udmurt-skogo Universiteta, Izhevsk, 1995.
doi: 10.1007/978-3-642-78393-7.![]() ![]() ![]() |
[21] |
V. V. Kozlov and N. V. Denisova, Symmetries and the topology of dynamical systems with two degrees of freedom, Russian Acad. Sci. Sb. Math., 80 (1995), 105-124.
doi: 10.1070/SM1995v080n01ABEH003516.![]() ![]() ![]() |
[22] |
V. V. Kozlov and N. V. Denisova, Polynomial integrals of geodesic flows on a two-dimensional torus, Russian Acad. Sci. Sb. Math., 83 (1995), 469-481.
doi: 10.1070/SM1995v083n02ABEH003601.![]() ![]() ![]() |
[23] |
V. V. Kozlov and D. V. Treschëv, On the integrability of Hamiltonian systems with toral position space, Math. USSR Sb., 63 (1989), 121-139.
doi: 10.1070/SM1989v063n01ABEH003263.![]() ![]() ![]() |
[24] |
A. E. Mironov, On polynomial integrals of a mechanical system on a two-dimensional torus, Izv. Math., 74 (2010), 805-817.
doi: 10.1070/IM2010v074n04ABEH002508.![]() ![]() ![]() |
[25] |
I. A. Taimanov, On an integrable magnetic geodesic flow on the two-torus, Regul. Chaotic Dyn., 20 (2015), 667-678.
doi: 10.1134/S1560354715060039.![]() ![]() ![]() |
[26] |
I. A. Taimanov, On first integrals of geodesic flows on a two-torus, Proc. Steklov Inst. Math., 295 (2016), 225-242.
doi: 10.1134/S0081543816080150.![]() ![]() ![]() |
[27] |
V. V. Ten, Polynomial first integrals for systems with gyroscopic forces, Math. Notes, 68 (2000), 135–138. Available from: https://link.springer.com/article/10.1007/BF02674658.
![]() ![]() |
[28] |
S. P. Tsarëv, The geometry of Hamiltonian systems of hydrodynamic type. The generalized hodograph method, Math. USSR-Izv, 37 (1991), 397-419.
doi: 10.1070/IM1991v037n02ABEH002069.![]() ![]() ![]() |