November  2019, 39(11): 6585-6597. doi: 10.3934/dcds.2019286

Almost surely invariance principle for non-stationary and random intermittent dynamical systems

Department of Mathematics, University of Houston, Houston, Texas 77204-3008, USA

Received  January 2019 Revised  May 2019 Published  August 2019

We establish almost sure invariance principles (ASIP), a strong form of approximation by Brownian motion, for non-stationary time series arising as observations on sequential maps possessing an indifferent fixed point. These transformations are obtained by perturbing the slope in the Pomeau-Manneville map. Quenched ASIP for random compositions of these maps is also obtained.

Citation: Yaofeng Su. Almost surely invariance principle for non-stationary and random intermittent dynamical systems. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6585-6597. doi: 10.3934/dcds.2019286
References:
[1]

R. AiminoH. Y. HuM. NicolA. Török and S. Vaienti, Polynomial loss of memory for maps of the interval with a neutral fixed point, Discrete Contin. Dyn. Syst., 35 (2015), 793-806.  doi: 10.3934/dcds.2015.35.793.

[2]

C. Cuny and F. Merlevède, Strong invariance principles with rate for "reverse" martingale differences and applications, J. Theoret. Probab., 28 (2015), 137-183.  doi: 10.1007/s10959-013-0506-z.

[3]

D. DragičevićG. FroylandC. González-Tokman and S. Vaienti, Almost sure invariance principle for random piecewise expanding maps, Nonlinearity, 31 (2018), 2252-2280.  doi: 10.1088/1361-6544/aaaf4b.

[4]

N. HaydnM. NicolA. Török and S. Vaienti, Almost sure invariance principle for sequential and non-stationary dynamical systems, Trans. Amer. Math. Soc., 369 (2017), 5293-5316.  doi: 10.1090/tran/6812.

[5]

O. Hella and J. Leppänen, Central limit theorems with a rate of convergence for time-dependent intermittent maps, arXiv E-Prints, arXiv: 1811.11170.

[6]

M. NicolA. Török and S. Vaienti, Central limit theorems for sequential and random intermittent dynamical systems, Ergodic Theory Dynam. Systems, 38 (2018), 1127-1153.  doi: 10.1017/etds.2016.69.

[7]

D. J. Scott and R. M. Huggins, On the embedding of processes in Brownian motion and the law of the iterated logarithm for reverse martingales, Bull. Austral. Math. Soc., 27 (1983), 443-459.  doi: 10.1017/S0004972700025946.

[8]

V. G. Sprindžuk, Metric Theory of Diophantine Approximations, Translated from the Russian and edited by Richard A. Silverman, With a foreword by Donald J. Newman, Scripta Series in Mathematics. V. H. Winston & Sons, Washington, D. C., A Halsted Press Book, John Wiley & Sons, New York-Toronto, Ont.-London, 1979.

show all references

References:
[1]

R. AiminoH. Y. HuM. NicolA. Török and S. Vaienti, Polynomial loss of memory for maps of the interval with a neutral fixed point, Discrete Contin. Dyn. Syst., 35 (2015), 793-806.  doi: 10.3934/dcds.2015.35.793.

[2]

C. Cuny and F. Merlevède, Strong invariance principles with rate for "reverse" martingale differences and applications, J. Theoret. Probab., 28 (2015), 137-183.  doi: 10.1007/s10959-013-0506-z.

[3]

D. DragičevićG. FroylandC. González-Tokman and S. Vaienti, Almost sure invariance principle for random piecewise expanding maps, Nonlinearity, 31 (2018), 2252-2280.  doi: 10.1088/1361-6544/aaaf4b.

[4]

N. HaydnM. NicolA. Török and S. Vaienti, Almost sure invariance principle for sequential and non-stationary dynamical systems, Trans. Amer. Math. Soc., 369 (2017), 5293-5316.  doi: 10.1090/tran/6812.

[5]

O. Hella and J. Leppänen, Central limit theorems with a rate of convergence for time-dependent intermittent maps, arXiv E-Prints, arXiv: 1811.11170.

[6]

M. NicolA. Török and S. Vaienti, Central limit theorems for sequential and random intermittent dynamical systems, Ergodic Theory Dynam. Systems, 38 (2018), 1127-1153.  doi: 10.1017/etds.2016.69.

[7]

D. J. Scott and R. M. Huggins, On the embedding of processes in Brownian motion and the law of the iterated logarithm for reverse martingales, Bull. Austral. Math. Soc., 27 (1983), 443-459.  doi: 10.1017/S0004972700025946.

[8]

V. G. Sprindžuk, Metric Theory of Diophantine Approximations, Translated from the Russian and edited by Richard A. Silverman, With a foreword by Donald J. Newman, Scripta Series in Mathematics. V. H. Winston & Sons, Washington, D. C., A Halsted Press Book, John Wiley & Sons, New York-Toronto, Ont.-London, 1979.

[1]

Claudio Bonanno, Marco Lenci. Pomeau-Manneville maps are global-local mixing. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1051-1069. doi: 10.3934/dcds.2020309

[2]

Romain Aimino, Huyi Hu, Matthew Nicol, Andrei Török, Sandro Vaienti. Polynomial loss of memory for maps of the interval with a neutral fixed point. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 793-806. doi: 10.3934/dcds.2015.35.793

[3]

Sherif I. Ammar, Alexander Zeifman, Yacov Satin, Ksenia Kiseleva, Victor Korolev. On limiting characteristics for a non-stationary two-processor heterogeneous system with catastrophes, server failures and repairs. Journal of Industrial and Management Optimization, 2021, 17 (3) : 1057-1068. doi: 10.3934/jimo.2020011

[4]

Zhihong Xia, Peizheng Yu. A fixed point theorem for twist maps. Discrete and Continuous Dynamical Systems, 2022, 42 (8) : 4051-4059. doi: 10.3934/dcds.2022045

[5]

Fredi Tröltzsch, Alberto Valli. Optimal voltage control of non-stationary eddy current problems. Mathematical Control and Related Fields, 2018, 8 (1) : 35-56. doi: 10.3934/mcrf.2018002

[6]

Hi Jun Choe, Do Wan Kim, Yongsik Kim. Meshfree method for the non-stationary incompressible Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2006, 6 (1) : 17-39. doi: 10.3934/dcdsb.2006.6.17

[7]

Yakov Krasnov, Alexander Kononovich, Grigory Osharovich. On a structure of the fixed point set of homogeneous maps. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 1017-1027. doi: 10.3934/dcdss.2013.6.1017

[8]

Luis Hernández-Corbato, Francisco R. Ruiz del Portal. Fixed point indices of planar continuous maps. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 2979-2995. doi: 10.3934/dcds.2015.35.2979

[9]

Chunhong Li, Jiaowan Luo. Stochastic invariance for neutral functional differential equation with non-lipschitz coefficients. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3299-3318. doi: 10.3934/dcdsb.2018321

[10]

Kaïs Ammari, Thomas Duyckaerts, Armen Shirikyan. Local feedback stabilisation to a non-stationary solution for a damped non-linear wave equation. Mathematical Control and Related Fields, 2016, 6 (1) : 1-25. doi: 10.3934/mcrf.2016.6.1

[11]

Yinnian He, Yanping Lin, Weiwei Sun. Stabilized finite element method for the non-stationary Navier-Stokes problem. Discrete and Continuous Dynamical Systems - B, 2006, 6 (1) : 41-68. doi: 10.3934/dcdsb.2006.6.41

[12]

Teck-Cheong Lim. On the largest common fixed point of a commuting family of isotone maps. Conference Publications, 2005, 2005 (Special) : 621-623. doi: 10.3934/proc.2005.2005.621

[13]

Grzegorz Graff, Piotr Nowak-Przygodzki. Fixed point indices of iterations of $C^1$ maps in $R^3$. Discrete and Continuous Dynamical Systems, 2006, 16 (4) : 843-856. doi: 10.3934/dcds.2006.16.843

[14]

Zhendong Luo. A reduced-order SMFVE extrapolation algorithm based on POD technique and CN method for the non-stationary Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2015, 20 (4) : 1189-1212. doi: 10.3934/dcdsb.2015.20.1189

[15]

Julian Newman. Synchronisation of almost all trajectories of a random dynamical system. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4163-4177. doi: 10.3934/dcds.2020176

[16]

Zvi Artstein. Invariance principle in the singular perturbations limit. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3653-3666. doi: 10.3934/dcdsb.2018309

[17]

Manuela Giampieri, Stefano Isola. A one-parameter family of analytic Markov maps with an intermittency transition. Discrete and Continuous Dynamical Systems, 2005, 12 (1) : 115-136. doi: 10.3934/dcds.2005.12.115

[18]

Francesco Paparella, Alessandro Portaluri. Geometry of stationary solutions for a system of vortex filaments: A dynamical approach. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 3011-3042. doi: 10.3934/dcds.2013.33.3011

[19]

Mohammad Eslamian, Ahmad Kamandi. A novel algorithm for approximating common solution of a system of monotone inclusion problems and common fixed point problem. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021210

[20]

Nicholas Long. Fixed point shifts of inert involutions. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1297-1317. doi: 10.3934/dcds.2009.25.1297

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (250)
  • HTML views (103)
  • Cited by (1)

Other articles
by authors

[Back to Top]