November  2019, 39(11): 6599-6630. doi: 10.3934/dcds.2019287

On the existence of full dimensional KAM torus for nonlinear Schrödinger equation

1. 

School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China

2. 

College of Science, The Institute of Aeronautical Engineering and Technology, Binzhou University, Binzhou 256600, China

3. 

School of Mathematical Sciences, Peking University, Beijing 100871, China

4. 

School of Mathematical Sciences, Fudan University, Shanghai 200433, China

* Corresponding author: Yuan Wu

Received  February 2019 Published  August 2019

Fund Project: H.C. is supported by the NNSFC (No. 11671066). L.M. is supported by the NNSFC (No. 11401041) and SPNSF (ZR2019MA062). Y.S. is supported by China Postdoctoral Science Foundation (No. 2018M641050). Y.W. is supported by NNSFC (No. 11790272 and No. 11421061)

In this paper, we study the following nonlinear Schrödinger equation
$ \begin{eqnarray} \sqrt{-1}u_{t}-u_{xx}+V*u+\epsilon f(x)|u|^4u = 0, \ x\in\mathbb{T} = \mathbb{R}/2\pi\mathbb{Z}, ~~~~~~~~~~~~~~~~~~~~~~~~~~~(1)\end{eqnarray} $
where
$ V* $
is the Fourier multiplier defined by
$ \widehat{(V* u})_n = V_{n}\widehat{u}_n, V_n\in[-1, 1] $
and
$ f(x) $
is Gevrey smooth. It is shown that for
$ 0\leq|\epsilon|\ll1 $
, there is some
$ (V_n)_{n\in\mathbb{Z}} $
such that, the equation (1) admits a time almost periodic solution (i.e., full dimensional KAM torus) in the Gevrey space. This extends results of Bourgain [7] and Cong-Liu-Shi-Yuan [8] to the case that the nonlinear perturbation depends explicitly on the space variable
$ x $
. The main difficulty here is the absence of zero momentum of the equation.
Citation: Hongzi Cong, Lufang Mi, Yunfeng Shi, Yuan Wu. On the existence of full dimensional KAM torus for nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6599-6630. doi: 10.3934/dcds.2019287
References:
[1]

P. BaldiM. Berti and R. Montalto, KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation, Math. Ann., 359 (2014), 471-536. doi: 10.1007/s00208-013-1001-7. Google Scholar

[2]

P. BaldiM. Berti and R. Montalto, KAM for autonomous quasi-linear perturbations of KdV, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1589-1638. doi: 10.1016/j.anihpc.2015.07.003. Google Scholar

[3]

J. Bourgain, Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equations, Geom. Funct. Anal., 6 (1996), 201-230. doi: 10.1007/BF02247885. Google Scholar

[4]

J. Bourgain, Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations, Ann. of Math., 148 (1998), 363-439. doi: 10.2307/121001. Google Scholar

[5]

J. Bourgain, Recent progress in quasi-periodic lattice Schrödinger operators and Hamiltonian partial differential equations, Russian Math. Surveys, 59 (2004), 231-246. doi: 10.1070/RM2004v059n02ABEH000716. Google Scholar

[6] J. Bourgain, Green's Function Estimates for Lattice Schrödinger Operators and Applications, Annals of Mathematics Studies, 158. Princeton University Press, Princeton, NJ, 2005. doi: 10.1515/9781400837144. Google Scholar
[7]

J. Bourgain, On invariant tori of full dimension for 1D periodic NLS, J. Funct. Anal., 229 (2005), 62-94. doi: 10.1016/j.jfa.2004.10.019. Google Scholar

[8]

H. Z. CongJ. J. LiuY. F. Shi and X. P. Yuan, The stability of full dimensional KAM tori for nonlinear Schrödinger equation, J. Differential Equations, 264 (2018), 4504-4563. doi: 10.1016/j.jde.2017.12.013. Google Scholar

[9]

W. Craig and C. E. Wayne, Newton's method and periodic solutions of nonlinear wave equations, Comm. Pure Appl. Math., 46 (1993), 1409-1498. doi: 10.1002/cpa.3160461102. Google Scholar

[10]

L. H. Eliasson and S. B. Kuksin, KAM for the nonlinear Schrödinger equation, Ann. of Math., 172 (2010), 371-435. doi: 10.4007/annals.2010.172.371. Google Scholar

[11]

R. Feola and M. Procesi, Quasi-periodic solutions for fully nonlinear forced reversible Schrödinger equations, J. Differential Equations, 259 (2015), 3389-3447. doi: 10.1016/j.jde.2015.04.025. Google Scholar

[12]

J. S. Geng, Invariant tori of full dimension for a nonlinear Schrödinger equation, J. Differential Equations, 252 (2012), 1-34. doi: 10.1016/j.jde.2011.09.006. Google Scholar

[13]

J. S. Geng and W. Hong, Invariant tori of full dimension for second KdV equations with the external parameters, J. Dynam. Differential Equations, 29 (2017), 1325-1354. doi: 10.1007/s10884-015-9505-3. Google Scholar

[14]

J. S. Geng and X. D. Xu, Almost periodic solutions of one dimensional Schrödinger equation with the external parameters, J. Dynam. Differential Equations, 25 (2013), 435-450. doi: 10.1007/s10884-013-9302-9. Google Scholar

[15]

T. Kappeler and J. Pöschel, KdV & KAM, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. 45. Springer-Verlag, Berlin, 2003.Google Scholar

[16]

S. B. Kuksin, Hamiltonian perturbations of infinite-dimensional linear systems with imaginary spectrum, Funktsional. Anal. i Prilozhen., 21 (1987), 22–37, 95. Google Scholar

[17]

S. B. Kuksin, Analysis of Hamiltonian PDEs, Oxford Lecture Series in Mathematics and its Applications, 19. Oxford University Press, Oxford, 2000. Google Scholar

[18]

S. B. Kuksin, Fifteen years of KAM for PDE., in Geometry, Topology, and Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, Amer. Math. Soc., Providence, RI, 212 (2004), 237–258. doi: 10.1090/trans2/212/12. Google Scholar

[19]

J. J. Liu and X. P. Yuan, A KAM theorem for Hamiltonian partial differential equations with unbounded perturbations, Comm. Math. Phys., 307 (2011), 629-673. doi: 10.1007/s00220-011-1353-3. Google Scholar

[20]

H. W. Niu and J. S. Geng, Almost periodic solutions for a class of higher-dimensional beam equations, Nonlinearity, 20 (2007), 2499-2517. doi: 10.1088/0951-7715/20/11/003. Google Scholar

[21]

J. Pöschel, Small divisors with spatial structure in infinite-dimensional Hamiltonian systems, Comm. Math. Phys., 127 (1990), 351-393. doi: 10.1007/BF02096763. Google Scholar

[22]

J. Pöschel, On the construction of almost periodic solutions for a nonlinear Schrödinger equation, Ergodic Theory Dynam. Systems, 22 (2002), 1537-1549. doi: 10.1017/S0143385702001086. Google Scholar

[23]

C. E. Wayne, Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory, Comm. Math. Phys., 127 (1990), 479-528. doi: 10.1007/BF02104499. Google Scholar

[24]

J. Wu and J. S. Geng, Almost periodic solutions for a class of semilinear quantum harmonic oscillators, Discrete Contin. Dyn. Syst., 31 (2011), 997-1015. doi: 10.3934/dcds.2011.31.997. Google Scholar

[25]

J. ZhangM. Gao and X. P. Yuan, KAM tori for reversible partial differential equations, Nonlinearity, 24 (2011), 1189-1228. doi: 10.1088/0951-7715/24/4/010. Google Scholar

show all references

References:
[1]

P. BaldiM. Berti and R. Montalto, KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation, Math. Ann., 359 (2014), 471-536. doi: 10.1007/s00208-013-1001-7. Google Scholar

[2]

P. BaldiM. Berti and R. Montalto, KAM for autonomous quasi-linear perturbations of KdV, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1589-1638. doi: 10.1016/j.anihpc.2015.07.003. Google Scholar

[3]

J. Bourgain, Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equations, Geom. Funct. Anal., 6 (1996), 201-230. doi: 10.1007/BF02247885. Google Scholar

[4]

J. Bourgain, Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations, Ann. of Math., 148 (1998), 363-439. doi: 10.2307/121001. Google Scholar

[5]

J. Bourgain, Recent progress in quasi-periodic lattice Schrödinger operators and Hamiltonian partial differential equations, Russian Math. Surveys, 59 (2004), 231-246. doi: 10.1070/RM2004v059n02ABEH000716. Google Scholar

[6] J. Bourgain, Green's Function Estimates for Lattice Schrödinger Operators and Applications, Annals of Mathematics Studies, 158. Princeton University Press, Princeton, NJ, 2005. doi: 10.1515/9781400837144. Google Scholar
[7]

J. Bourgain, On invariant tori of full dimension for 1D periodic NLS, J. Funct. Anal., 229 (2005), 62-94. doi: 10.1016/j.jfa.2004.10.019. Google Scholar

[8]

H. Z. CongJ. J. LiuY. F. Shi and X. P. Yuan, The stability of full dimensional KAM tori for nonlinear Schrödinger equation, J. Differential Equations, 264 (2018), 4504-4563. doi: 10.1016/j.jde.2017.12.013. Google Scholar

[9]

W. Craig and C. E. Wayne, Newton's method and periodic solutions of nonlinear wave equations, Comm. Pure Appl. Math., 46 (1993), 1409-1498. doi: 10.1002/cpa.3160461102. Google Scholar

[10]

L. H. Eliasson and S. B. Kuksin, KAM for the nonlinear Schrödinger equation, Ann. of Math., 172 (2010), 371-435. doi: 10.4007/annals.2010.172.371. Google Scholar

[11]

R. Feola and M. Procesi, Quasi-periodic solutions for fully nonlinear forced reversible Schrödinger equations, J. Differential Equations, 259 (2015), 3389-3447. doi: 10.1016/j.jde.2015.04.025. Google Scholar

[12]

J. S. Geng, Invariant tori of full dimension for a nonlinear Schrödinger equation, J. Differential Equations, 252 (2012), 1-34. doi: 10.1016/j.jde.2011.09.006. Google Scholar

[13]

J. S. Geng and W. Hong, Invariant tori of full dimension for second KdV equations with the external parameters, J. Dynam. Differential Equations, 29 (2017), 1325-1354. doi: 10.1007/s10884-015-9505-3. Google Scholar

[14]

J. S. Geng and X. D. Xu, Almost periodic solutions of one dimensional Schrödinger equation with the external parameters, J. Dynam. Differential Equations, 25 (2013), 435-450. doi: 10.1007/s10884-013-9302-9. Google Scholar

[15]

T. Kappeler and J. Pöschel, KdV & KAM, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. 45. Springer-Verlag, Berlin, 2003.Google Scholar

[16]

S. B. Kuksin, Hamiltonian perturbations of infinite-dimensional linear systems with imaginary spectrum, Funktsional. Anal. i Prilozhen., 21 (1987), 22–37, 95. Google Scholar

[17]

S. B. Kuksin, Analysis of Hamiltonian PDEs, Oxford Lecture Series in Mathematics and its Applications, 19. Oxford University Press, Oxford, 2000. Google Scholar

[18]

S. B. Kuksin, Fifteen years of KAM for PDE., in Geometry, Topology, and Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, Amer. Math. Soc., Providence, RI, 212 (2004), 237–258. doi: 10.1090/trans2/212/12. Google Scholar

[19]

J. J. Liu and X. P. Yuan, A KAM theorem for Hamiltonian partial differential equations with unbounded perturbations, Comm. Math. Phys., 307 (2011), 629-673. doi: 10.1007/s00220-011-1353-3. Google Scholar

[20]

H. W. Niu and J. S. Geng, Almost periodic solutions for a class of higher-dimensional beam equations, Nonlinearity, 20 (2007), 2499-2517. doi: 10.1088/0951-7715/20/11/003. Google Scholar

[21]

J. Pöschel, Small divisors with spatial structure in infinite-dimensional Hamiltonian systems, Comm. Math. Phys., 127 (1990), 351-393. doi: 10.1007/BF02096763. Google Scholar

[22]

J. Pöschel, On the construction of almost periodic solutions for a nonlinear Schrödinger equation, Ergodic Theory Dynam. Systems, 22 (2002), 1537-1549. doi: 10.1017/S0143385702001086. Google Scholar

[23]

C. E. Wayne, Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory, Comm. Math. Phys., 127 (1990), 479-528. doi: 10.1007/BF02104499. Google Scholar

[24]

J. Wu and J. S. Geng, Almost periodic solutions for a class of semilinear quantum harmonic oscillators, Discrete Contin. Dyn. Syst., 31 (2011), 997-1015. doi: 10.3934/dcds.2011.31.997. Google Scholar

[25]

J. ZhangM. Gao and X. P. Yuan, KAM tori for reversible partial differential equations, Nonlinearity, 24 (2011), 1189-1228. doi: 10.1088/0951-7715/24/4/010. Google Scholar

[1]

Benjamin Dodson. Improved almost Morawetz estimates for the cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2011, 10 (1) : 127-140. doi: 10.3934/cpaa.2011.10.127

[2]

Alp Eden, Elİf Kuz. Almost cubic nonlinear Schrödinger equation: Existence, uniqueness and scattering. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1803-1823. doi: 10.3934/cpaa.2009.8.1803

[3]

Jason Murphy, Fabio Pusateri. Almost global existence for cubic nonlinear Schrödinger equations in one space dimension. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2077-2102. doi: 10.3934/dcds.2017089

[4]

Meina Gao, Jianjun Liu. Quasi-periodic solutions for derivative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2101-2123. doi: 10.3934/dcds.2012.32.2101

[5]

Kazumasa Fujiwara, Tohru Ozawa. On the lifespan of strong solutions to the periodic derivative nonlinear Schrödinger equation. Evolution Equations & Control Theory, 2018, 7 (2) : 275-280. doi: 10.3934/eect.2018013

[6]

D.G. deFigueiredo, Yanheng Ding. Solutions of a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 563-584. doi: 10.3934/dcds.2002.8.563

[7]

Silvia Cingolani, Mónica Clapp. Symmetric semiclassical states to a magnetic nonlinear Schrödinger equation via equivariant Morse theory. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1263-1281. doi: 10.3934/cpaa.2010.9.1263

[8]

Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119

[9]

Jean-Claude Saut, Jun-Ichi Segata. Asymptotic behavior in time of solution to the nonlinear Schrödinger equation with higher order anisotropic dispersion. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 219-239. doi: 10.3934/dcds.2019009

[10]

Zhong Wang. Stability of Hasimoto solitons in energy space for a fourth order nonlinear Schrödinger type equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4091-4108. doi: 10.3934/dcds.2017174

[11]

Congming Peng, Dun Zhao. Global existence and blowup on the energy space for the inhomogeneous fractional nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3335-3356. doi: 10.3934/dcdsb.2018323

[12]

Alexander Pankov. Nonlinear Schrödinger Equations on Periodic Metric Graphs. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 697-714. doi: 10.3934/dcds.2018030

[13]

Alexander Arbieto, Carlos Matheus. On the periodic Schrödinger-Debye equation. Communications on Pure & Applied Analysis, 2008, 7 (3) : 699-713. doi: 10.3934/cpaa.2008.7.699

[14]

Daniela De Silva, Nataša Pavlović, Gigliola Staffilani, Nikolaos Tzirakis. Global well-posedness for a periodic nonlinear Schrödinger equation in 1D and 2D. Discrete & Continuous Dynamical Systems - A, 2007, 19 (1) : 37-65. doi: 10.3934/dcds.2007.19.37

[15]

Minoru Murai, Kunimochi Sakamoto, Shoji Yotsutani. Representation formula for traveling waves to a derivative nonlinear Schrödinger equation with the periodic boundary condition. Conference Publications, 2015, 2015 (special) : 878-900. doi: 10.3934/proc.2015.0878

[16]

Pavel I. Naumkin, Isahi Sánchez-Suárez. On the critical nongauge invariant nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 807-834. doi: 10.3934/dcds.2011.30.807

[17]

Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1571-1601. doi: 10.3934/cpaa.2016003

[18]

Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063

[19]

Dario Bambusi, A. Carati, A. Ponno. The nonlinear Schrödinger equation as a resonant normal form. Discrete & Continuous Dynamical Systems - B, 2002, 2 (1) : 109-128. doi: 10.3934/dcdsb.2002.2.109

[20]

Gaku Hoshino. Dissipative nonlinear schrödinger equations for large data in one space dimension. Communications on Pure & Applied Analysis, 2020, 19 (2) : 967-981. doi: 10.3934/cpaa.2020044

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (35)
  • HTML views (74)
  • Cited by (0)

Other articles
by authors

[Back to Top]