November  2019, 39(11): 6631-6642. doi: 10.3934/dcds.2019288

Relative entropy dimension of topological dynamical systems

Department of Mathematics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China

Received  February 2019 Revised  April 2019 Published  August 2019

Fund Project: (*) This research is supported by NSFC(11801193)

We introduce the notion of relative topological entropy dimension to classify the different intermediate levels of relative complexity for factor maps. By considering the dimension or ''density" of special class of sequences along which the entropy is encountered, we provide equivalent definitions of relative entropy dimension. As applications, we investigate the corresponding localization theory and obtain a disjointness theorem involving relative entropy dimension.

Citation: Xiaomin Zhou. Relative entropy dimension of topological dynamical systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6631-6642. doi: 10.3934/dcds.2019288
References:
[1]

F. Blanchard, A disjointness theorem involving topological entropy, Bull. Soc. Math. France, 121 (1993), 465-478. doi: 10.24033/bsmf.2216. Google Scholar

[2]

M. de Carvalho, Entropy dimension of dynamical systems, Portugal. Math., 54 (1997), 19-40. Google Scholar

[3]

D. DouW. Huang and K. Park, Entropy dimension of topological dynamical systems, Trans. Amer. Math. Soc., 363 (2011), 659-680. doi: 10.1090/S0002-9947-2010-04906-2. Google Scholar

[4]

D. DouW. Huang and K. Park, Entropy dimension of measure preserving systems, Trans. Amer. Math. Soc., 371 (2019), 7029-7065. doi: 10.1090/tran/7542. Google Scholar

[5]

D. Dou and K. K. Park, Examples of entropy generating sequence, Sci. China Math., 54 (2011), 531-538. doi: 10.1007/s11425-010-4152-y. Google Scholar

[6]

S. Ferenczi and K. K. Park, Entropy dimensions and a class of constructive examples, Discrete Cont. Dyn. Syst., 17 (2007), 133-141. doi: 10.3934/dcds.2007.17.133. Google Scholar

[7]

H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory, 1 (1967), 1-49. doi: 10.1007/BF01692494. Google Scholar

[8] H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton University Press, Princeton, N.J., 1981. Google Scholar
[9]

T. N. T. Goodman, Topological sequence entropy, Proc. London Math. Soc., 29 (1974), 331-350. doi: 10.1112/plms/s3-29.2.331. Google Scholar

[10]

W. HuangS. M. LiS. Shao and X. D. Ye, Null systems and sequence entropy pairs, Ergodic Theory Dynam. Systems, 23 (2003), 1505-1523. doi: 10.1017/S0143385702001724. Google Scholar

[11]

W. HuangK. K. Park and X. D. Ye, Topological disjointness for entropy zero systems, Bull. Soc. Math. France, 135 (2007), 259-282. doi: 10.24033/bsmf.2534. Google Scholar

[12]

W. Huang and X. D. Ye, Dynamical systems disjoint from any minimal system, Trans. Amer. Math. Soc., 357 (2005), 669-694. doi: 10.1090/S0002-9947-04-03540-8. Google Scholar

[13]

W. Huang and X. D. Ye, Combinatorial lemmas and applications to dynamics, Adv. Math., 220 (2009), 1689-1716. doi: 10.1016/j.aim.2008.11.009. Google Scholar

[14]

W. HuangX. D. Ye and G. H. Zhang, Relative entropy tuples, relative U.P.E. and C.P.E. extensions, Israel J. Math., 158 (2007), 249-283. doi: 10.1007/s11856-007-0013-y. Google Scholar

[15]

P. Hulse, Sequence entropy and subsequence generators, J. London Math. Soc., 26 (1982), 441-450. doi: 10.1112/jlms/s2-26.3.441. Google Scholar

[16]

T. Kamae and L. Zamboni, Sequence entropy and the maximal pattern complexity of infinite words, Ergodic Theory Dynam. Systems, 22 (2002), 1191-1199. doi: 10.1017/S0143385702000585. Google Scholar

[17]

A. Katok and J.-P. Thouvenot, Slow entropy type invanriants and smooth realization of commuting measure-preserving transformations, Ann. Inst. Henri Poincare Probab. Statist., 33 (1997), 323-338. doi: 10.1016/S0246-0203(97)80094-5. Google Scholar

[18]

D. Kerr and H. Li, Independence in topological C*-dynamics, Math. Ann., 338 (2007), 869-926. Google Scholar

[19]

A. G. Kušhnirenkov, Metric invariants of entropy type, Uspekhi Mat. Nauk, 22 (1967), 57-65. Google Scholar

show all references

References:
[1]

F. Blanchard, A disjointness theorem involving topological entropy, Bull. Soc. Math. France, 121 (1993), 465-478. doi: 10.24033/bsmf.2216. Google Scholar

[2]

M. de Carvalho, Entropy dimension of dynamical systems, Portugal. Math., 54 (1997), 19-40. Google Scholar

[3]

D. DouW. Huang and K. Park, Entropy dimension of topological dynamical systems, Trans. Amer. Math. Soc., 363 (2011), 659-680. doi: 10.1090/S0002-9947-2010-04906-2. Google Scholar

[4]

D. DouW. Huang and K. Park, Entropy dimension of measure preserving systems, Trans. Amer. Math. Soc., 371 (2019), 7029-7065. doi: 10.1090/tran/7542. Google Scholar

[5]

D. Dou and K. K. Park, Examples of entropy generating sequence, Sci. China Math., 54 (2011), 531-538. doi: 10.1007/s11425-010-4152-y. Google Scholar

[6]

S. Ferenczi and K. K. Park, Entropy dimensions and a class of constructive examples, Discrete Cont. Dyn. Syst., 17 (2007), 133-141. doi: 10.3934/dcds.2007.17.133. Google Scholar

[7]

H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory, 1 (1967), 1-49. doi: 10.1007/BF01692494. Google Scholar

[8] H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton University Press, Princeton, N.J., 1981. Google Scholar
[9]

T. N. T. Goodman, Topological sequence entropy, Proc. London Math. Soc., 29 (1974), 331-350. doi: 10.1112/plms/s3-29.2.331. Google Scholar

[10]

W. HuangS. M. LiS. Shao and X. D. Ye, Null systems and sequence entropy pairs, Ergodic Theory Dynam. Systems, 23 (2003), 1505-1523. doi: 10.1017/S0143385702001724. Google Scholar

[11]

W. HuangK. K. Park and X. D. Ye, Topological disjointness for entropy zero systems, Bull. Soc. Math. France, 135 (2007), 259-282. doi: 10.24033/bsmf.2534. Google Scholar

[12]

W. Huang and X. D. Ye, Dynamical systems disjoint from any minimal system, Trans. Amer. Math. Soc., 357 (2005), 669-694. doi: 10.1090/S0002-9947-04-03540-8. Google Scholar

[13]

W. Huang and X. D. Ye, Combinatorial lemmas and applications to dynamics, Adv. Math., 220 (2009), 1689-1716. doi: 10.1016/j.aim.2008.11.009. Google Scholar

[14]

W. HuangX. D. Ye and G. H. Zhang, Relative entropy tuples, relative U.P.E. and C.P.E. extensions, Israel J. Math., 158 (2007), 249-283. doi: 10.1007/s11856-007-0013-y. Google Scholar

[15]

P. Hulse, Sequence entropy and subsequence generators, J. London Math. Soc., 26 (1982), 441-450. doi: 10.1112/jlms/s2-26.3.441. Google Scholar

[16]

T. Kamae and L. Zamboni, Sequence entropy and the maximal pattern complexity of infinite words, Ergodic Theory Dynam. Systems, 22 (2002), 1191-1199. doi: 10.1017/S0143385702000585. Google Scholar

[17]

A. Katok and J.-P. Thouvenot, Slow entropy type invanriants and smooth realization of commuting measure-preserving transformations, Ann. Inst. Henri Poincare Probab. Statist., 33 (1997), 323-338. doi: 10.1016/S0246-0203(97)80094-5. Google Scholar

[18]

D. Kerr and H. Li, Independence in topological C*-dynamics, Math. Ann., 338 (2007), 869-926. Google Scholar

[19]

A. G. Kušhnirenkov, Metric invariants of entropy type, Uspekhi Mat. Nauk, 22 (1967), 57-65. Google Scholar

[1]

Yixiao Qiao, Xiaoyao Zhou. Zero sequence entropy and entropy dimension. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 435-448. doi: 10.3934/dcds.2017018

[2]

Jean Dolbeault, Giuseppe Toscani. Fast diffusion equations: Matching large time asymptotics by relative entropy methods. Kinetic & Related Models, 2011, 4 (3) : 701-716. doi: 10.3934/krm.2011.4.701

[3]

Denis Serre, Alexis F. Vasseur. The relative entropy method for the stability of intermediate shock waves; the rich case. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4569-4577. doi: 10.3934/dcds.2016.36.4569

[4]

Alain Chenciner. The angular momentum of a relative equilibrium. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1033-1047. doi: 10.3934/dcds.2013.33.1033

[5]

Matteo Bonforte, Jean Dolbeault, Matteo Muratori, Bruno Nazaret. Weighted fast diffusion equations (Part Ⅱ): Sharp asymptotic rates of convergence in relative error by entropy methods. Kinetic & Related Models, 2017, 10 (1) : 61-91. doi: 10.3934/krm.2017003

[6]

Min Qian, Jian-Sheng Xie. Entropy formula for endomorphisms: Relations between entropy, exponents and dimension. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 367-392. doi: 10.3934/dcds.2008.21.367

[7]

Paul Wright. Differentiability of Hausdorff dimension of the non-wandering set in a planar open billiard. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3993-4014. doi: 10.3934/dcds.2016.36.3993

[8]

Frederic Laurent-Polz, James Montaldi, Mark Roberts. Point vortices on the sphere: Stability of symmetric relative equilibria. Journal of Geometric Mechanics, 2011, 3 (4) : 439-486. doi: 10.3934/jgm.2011.3.439

[9]

Therese Mur, Hernan R. Henriquez. Relative controllability of linear systems of fractional order with delay. Mathematical Control & Related Fields, 2015, 5 (4) : 845-858. doi: 10.3934/mcrf.2015.5.845

[10]

Zihui Liu, Xiangyong Zeng. The geometric structure of relative one-weight codes. Advances in Mathematics of Communications, 2016, 10 (2) : 367-377. doi: 10.3934/amc.2016011

[11]

Björn Sandstede, Arnd Scheel. Relative Morse indices, Fredholm indices, and group velocities. Discrete & Continuous Dynamical Systems - A, 2008, 20 (1) : 139-158. doi: 10.3934/dcds.2008.20.139

[12]

Chenxi Wu. The relative cohomology of abelian covers of the flat pillowcase. Journal of Modern Dynamics, 2015, 9: 123-140. doi: 10.3934/jmd.2015.9.123

[13]

Eduard Feireisl. Relative entropies in thermodynamics of complete fluid systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3059-3080. doi: 10.3934/dcds.2012.32.3059

[14]

Simon Scott. Relative zeta determinants and the geometry of the determinant line bundle. Electronic Research Announcements, 2001, 7: 8-16.

[15]

Yan Huang. On Hausdorff dimension of the set of non-ergodic directions of two-genus double cover of tori. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2395-2409. doi: 10.3934/dcds.2018099

[16]

María Anguiano, Alain Haraux. The $\varepsilon$-entropy of some infinite dimensional compact ellipsoids and fractal dimension of attractors. Evolution Equations & Control Theory, 2017, 6 (3) : 345-356. doi: 10.3934/eect.2017018

[17]

James Montaldi. Bifurcations of relative equilibria near zero momentum in Hamiltonian systems with spherical symmetry. Journal of Geometric Mechanics, 2014, 6 (2) : 237-260. doi: 10.3934/jgm.2014.6.237

[18]

Lyudmila Grigoryeva, Juan-Pablo Ortega, Stanislav S. Zub. Stability of Hamiltonian relative equilibria in symmetric magnetically confined rigid bodies. Journal of Geometric Mechanics, 2014, 6 (3) : 373-415. doi: 10.3934/jgm.2014.6.373

[19]

Stefano Maset. Conditioning and relative error propagation in linear autonomous ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2879-2909. doi: 10.3934/dcdsb.2018165

[20]

Navin Keswani. Homotopy invariance of relative eta-invariants and $C^*$-algebra $K$-theory. Electronic Research Announcements, 1998, 4: 18-26.

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (61)
  • HTML views (73)
  • Cited by (0)

Other articles
by authors

[Back to Top]