We introduce the notion of relative topological entropy dimension to classify the different intermediate levels of relative complexity for factor maps. By considering the dimension or ''density" of special class of sequences along which the entropy is encountered, we provide equivalent definitions of relative entropy dimension. As applications, we investigate the corresponding localization theory and obtain a disjointness theorem involving relative entropy dimension.
Citation: |
[1] |
F. Blanchard, A disjointness theorem involving topological entropy, Bull. Soc. Math. France, 121 (1993), 465-478.
doi: 10.24033/bsmf.2216.![]() ![]() ![]() |
[2] |
M. de Carvalho, Entropy dimension of dynamical systems, Portugal. Math., 54 (1997), 19-40.
![]() ![]() |
[3] |
D. Dou, W. Huang and K. Park, Entropy dimension of topological dynamical systems, Trans. Amer. Math. Soc., 363 (2011), 659-680.
doi: 10.1090/S0002-9947-2010-04906-2.![]() ![]() ![]() |
[4] |
D. Dou, W. Huang and K. Park, Entropy dimension of measure preserving systems, Trans. Amer. Math. Soc., 371 (2019), 7029-7065.
doi: 10.1090/tran/7542.![]() ![]() |
[5] |
D. Dou and K. K. Park, Examples of entropy generating sequence, Sci. China Math., 54 (2011), 531-538.
doi: 10.1007/s11425-010-4152-y.![]() ![]() ![]() |
[6] |
S. Ferenczi and K. K. Park, Entropy dimensions and a class of constructive examples, Discrete Cont. Dyn. Syst., 17 (2007), 133-141.
doi: 10.3934/dcds.2007.17.133.![]() ![]() ![]() |
[7] |
H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory, 1 (1967), 1-49.
doi: 10.1007/BF01692494.![]() ![]() ![]() |
[8] |
H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton University Press, Princeton, N.J., 1981.
![]() ![]() |
[9] |
T. N. T. Goodman, Topological sequence entropy, Proc. London Math. Soc., 29 (1974), 331-350.
doi: 10.1112/plms/s3-29.2.331.![]() ![]() ![]() |
[10] |
W. Huang, S. M. Li, S. Shao and X. D. Ye, Null systems and sequence entropy pairs, Ergodic Theory Dynam. Systems, 23 (2003), 1505-1523.
doi: 10.1017/S0143385702001724.![]() ![]() ![]() |
[11] |
W. Huang, K. K. Park and X. D. Ye, Topological disjointness for entropy zero systems, Bull. Soc. Math. France, 135 (2007), 259-282.
doi: 10.24033/bsmf.2534.![]() ![]() ![]() |
[12] |
W. Huang and X. D. Ye, Dynamical systems disjoint from any minimal system, Trans. Amer. Math. Soc., 357 (2005), 669-694.
doi: 10.1090/S0002-9947-04-03540-8.![]() ![]() ![]() |
[13] |
W. Huang and X. D. Ye, Combinatorial lemmas and applications to dynamics, Adv. Math., 220 (2009), 1689-1716.
doi: 10.1016/j.aim.2008.11.009.![]() ![]() ![]() |
[14] |
W. Huang, X. D. Ye and G. H. Zhang, Relative entropy tuples, relative U.P.E. and C.P.E. extensions, Israel J. Math., 158 (2007), 249-283.
doi: 10.1007/s11856-007-0013-y.![]() ![]() ![]() |
[15] |
P. Hulse, Sequence entropy and subsequence generators, J. London Math. Soc., 26 (1982), 441-450.
doi: 10.1112/jlms/s2-26.3.441.![]() ![]() ![]() |
[16] |
T. Kamae and L. Zamboni, Sequence entropy and the maximal pattern complexity of infinite words, Ergodic Theory Dynam. Systems, 22 (2002), 1191-1199.
doi: 10.1017/S0143385702000585.![]() ![]() ![]() |
[17] |
A. Katok and J.-P. Thouvenot, Slow entropy type invanriants and smooth realization of commuting measure-preserving transformations, Ann. Inst. Henri Poincare Probab. Statist., 33 (1997), 323-338.
doi: 10.1016/S0246-0203(97)80094-5.![]() ![]() ![]() |
[18] |
D. Kerr and H. Li, Independence in topological C*-dynamics, Math. Ann., 338 (2007), 869-926.
![]() |
[19] |
A. G. Kušhnirenkov, Metric invariants of entropy type, Uspekhi Mat. Nauk, 22 (1967), 57-65.
![]() ![]() |