This paper concerns the Cauchy problem of the two-dimensional density-dependent Boussinesq equations on the whole space $ \mathbb{R}^{2} $ with zero density at infinity. We prove that there exists a unique global strong solution provided the initial density and the initial temperature decay not too slow at infinity. In particular, the initial data can be arbitrarily large and the initial density may contain vacuum states and even have compact support. Moreover, there is no need to require any Cho-Choe-Kim type compatibility conditions. Our proof relies on the delicate weighted estimates and a lemma due to Coifman-Lions-Meyer-Semmes [J. Math. Pures Appl., 72 (1993), pp. 247-286].
Citation: |
[1] | D. Adhikari, C. Cao, J. Wu and X. Xu, Small global solutions to the damped two-dimensional Boussinesq equations, J. Differential Equations, 256 (2014), 3594-3613. doi: 10.1016/j.jde.2014.02.012. |
[2] | S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, Ⅰ, Comm. Pure Appl. Math., 12 (1959), 623–727; Ⅱ, Comm. Pure Appl. Math., 17 (1964), 35–92. doi: 10.1002/cpa.3160120405. |
[3] | J. R. Cannon and E. DiBenedetto, The initial value problem for the Boussinesq equations with data in $L^p$, in Approximation methods for Navier-Stokes problems (ed. R. Rautmann), Springer, Berlin, 771 (1980), 129–144. |
[4] | C. Cao and J. Wu, Global regularity for the two-dimensional anisotropic Boussinesq equations with vertical dissipation, Arch. Rational Mech. Anal., 208 (2013), 985-1004. doi: 10.1007/s00205-013-0610-3. |
[5] | D. Chae, Global regularity for the 2D Boussinesq equations with partial viscosity terms, Adv. Math., 203 (2006), 497-513. doi: 10.1016/j.aim.2005.05.001. |
[6] | Y. Cho and H. Kim, Existence result for heat-conducting viscous incompressible fluids with vacuum, J. Korean Math. Soc., 45 (2008), 645-681. doi: 10.4134/JKMS.2008.45.3.645. |
[7] | Y. Cho, H. J. Choe and H. Kim, Unique solvability of the initial boundary value problems for compressible viscous fluids, J. Math. Pures Appl., 83 (2004), 243-275. doi: 10.1016/j.matpur.2003.11.004. |
[8] | H. J. Choe and H. Kim, Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids, Comm. Partial Differential Equations, 28 (2003), 1183-1201. doi: 10.1081/PDE-120021191. |
[9] | R. Coifman, P. L. Lions, Y. Meyer and S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl., 72 (1993), 247-286. |
[10] | J. Fan and T. Ozawa, Regularity criteria for the 3D density-dependent Boussinesq equations, Nonlinearity, 22 (2009), 553-568. doi: 10.1088/0951-7715/22/3/003. |
[11] | D. Hoff, Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data, J. Differential Equations, 120 (1995), 215-254. doi: 10.1006/jdeq.1995.1111. |
[12] | T. Y. Hou and C. Li, Global well-posedness of the viscous Boussinesq equations, Discrete Contin. Dyn. Syst., 12 (2005), 1-12. doi: 10.3934/dcds.2005.12.1. |
[13] | N. Ju, Global regularity and long-time behavior of the solutions to the 2D Boussinesq equations without diffusivity in a bounded domain, J. Math. Fluid Mech., 19 (2017), 105-121. doi: 10.1007/s00021-016-0277-2. |
[14] | M.-J. Lai, R. Pan and K. Zhao, Initial boundary value problem for two-dimensional viscous Boussinesq equations, Arch. Ration. Mech. Anal., 199 (2011), 739-760. doi: 10.1007/s00205-010-0357-z. |
[15] | J. Li and E. S. Titi, Global well-posedness of the 2D Boussinesq equations with vertical dissipation, Arch. Ration. Mech. Anal., 220 (2016), 983-1001. doi: 10.1007/s00205-015-0946-y. |
[16] | J. Li and Z. Liang, On local classical solutions to the Cauchy problem of the two-dimensional barotropic compressible Navier-Stokes equations with vacuum, J. Math. Pures Appl., 102 (2014), 640-671. doi: 10.1016/j.matpur.2014.02.001. |
[17] | P. L. Lions, Mathematical Topics in Fluid Mechanics, Vol. I: Incompressible Models, Oxford University Press, Oxford, 1996. |
[18] | P. L. Lions, Mathematical Topics in Fluid Mechanics, Vol. II: Compressible Models, Oxford University Press, Oxford, 1998. |
[19] | B. Lü, X. Shi and X. Zhong, Global existence and large time asymptotic behavior of strong solutions to the Cauchy problem of 2D density-dependent Navier-Stokes equations with vacuum, Nonlinearity, 31 (2018), 2617-2632. doi: 10.1088/1361-6544/aab31f. |
[20] | A. Majda, Introduction to PDEs and Waves for the Atmosphere and Ocean, American Mathematical Society, Providence, RI, 2003. doi: 10.1090/cln/009. |
[21] | L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa, 13 (1959), 115-162. |
[22] | J. Pedlosky, Geophysical Fluid Dynamics, Springer-Verlag, New York, 1987. |
[23] | H. Qiu and Z. Yao, Well-posedness for density-dependent Boussinesq equations without dissipation terms in Besov spaces, Comput. Math. Appl., 73 (2017), 1920-1931. doi: 10.1016/j.camwa.2017.02.041. |
[24] | E. M. Stein, Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1993. |
[25] | R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, Reprint of the 1984 edition, AMS Chelsea Publishing, Providence, RI, 2001. doi: 10.1090/chel/343. |
[26] | Z. Zhang, 3D density-dependent Boussinesq equations with velocity field in BMO spaces, Acta Appl. Math., 142 (2016), 1-8. doi: 10.1007/s10440-015-0011-8. |
[27] | X. Zhong, Strong solutions to the 2D Cauchy problem of density-dependent viscous Boussinesq equations with vacuum, J. Math. Phys., 60 (2019), 051505, 15 pp. doi: 10.1063/1.5048285. |