December  2019, 39(12): 7101-7112. doi: 10.3934/dcds.2019297

Regularity of monotone transport maps between unbounded domains

1. 

Institut de Mathematiques de Jussieu, Sorbonne Université - UPMC (Paris 6), 4 Place Jussieu, 75005 Paris, France

2. 

ETH Zürich, Mathematics Department, Rämistrasse 101, 8092 Zürich, Switzerland

* Corresponding author: Alessio Figalli

A Luis A. Caffarelli en su 70 años, con amistad y admiración

Received  November 2018 Published  September 2019

Fund Project: The second author has received funding from the European Research Council under the Grant Agreement No. 721675 "Regularity and Stability in Partial Differential Equations (RSPDE)".

The regularity of monotone transport maps plays an important role in several applications to PDE and geometry. Unfortunately, the classical statements on this subject are restricted to the case when the measures are compactly supported. In this note we show that, in several situations of interest, one can to ensure the regularity of monotone maps even if the measures may have unbounded supports.

Citation: Dario Cordero-Erausquin, Alessio Figalli. Regularity of monotone transport maps between unbounded domains. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7101-7112. doi: 10.3934/dcds.2019297
References:
[1]

S. AleskerS. Dar and V. Milman, A remarkable measure preserving diffeomorphism between two convex bodies in $ {\mathbb{R}}^n$, Geom. Dedicata, 74 (1999), 201-212.  doi: 10.1023/A:1005087216335.  Google Scholar

[2]

L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Second edition. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2008. x+334 pp.  Google Scholar

[3]

L. A. Caffarelli, A localization property of viscosity solutions to the Monge-Ampère equation and their strict convexity, Ann. of Math., 131 (1990), 129-134.  doi: 10.2307/1971509.  Google Scholar

[4]

L. A. Caffarelli, Some regularity properties of solutions of Monge Ampère equation, Comm. Pure Appl. Math., 44 (1991), 965-969.  doi: 10.1002/cpa.3160440809.  Google Scholar

[5]

L. A. Caffarelli, Interior $W^{2, p}$ estimates for solutions of the Monge-Ampère equation, Ann. of Math. (2), 131 (1990), 135-150.  doi: 10.2307/1971510.  Google Scholar

[6]

L. A. Caffarelli, The regularity of mappings with a convex potential, J. Amer. Math. Soc., 5 (1992), 99-104.  doi: 10.1090/S0894-0347-1992-1124980-8.  Google Scholar

[7]

G. De Philippis and A. Figalli, $W^{2, 1}$ regularity for solutions of the Monge-Ampère equation, Invent. Math., 192 (2013), 55-69.  doi: 10.1007/s00222-012-0405-4.  Google Scholar

[8]

G. De Philippis and A. Figalli, The Monge-Ampère equation and its link to optimal transportation, Bull. Amer. Math. Soc. (N.S.), 51 (2014), 527-580.  doi: 10.1090/S0273-0979-2014-01459-4.  Google Scholar

[9]

G. De PhilippisA. Figalli and O. Savin, A note on interior $W^{2, 1+\epsilon}$ estimates for the Monge-Ampère equation, Math. Ann., 357 (2013), 11-22.  doi: 10.1007/s00208-012-0895-9.  Google Scholar

[10]

A. Figalli, The Monge-Ampère Equation and Its Applications, Zürich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich, 2017. x+200 doi: 10.4171/170.  Google Scholar

[11]

A. FigalliY. Jhaveri and C. Mooney, Nonlinear bounds in Hölder spaces for the Monge-Ampère equation, J. Funct. Anal., 270 (2016), 3808-3827.   Google Scholar

[12]

A. FigalliY.-H. Kim and R. J. McCann, Hölder continuity and injectivity of optimal maps, Arch. Ration. Mech. Anal., 209 (2013), 747-795.  doi: 10.1007/s00205-013-0629-5.  Google Scholar

[13]

A. FigalliL. Rifford and C. Villani, Necessary and sufficient conditions for continuity of optimal transport maps on Riemannian manifolds, Tohoku Math. J. (2), 63 (2011), 855-876.  doi: 10.2748/tmj/1325886291.  Google Scholar

[14]

M. Gromov, Convex sets and Kähler manifolds, in Advances in Differential Geometry and Topology, World Scientific, Teaneck, NJ, 1990, 1–38.  Google Scholar

[15]

R. J. McCann, Existence and uniqueness of monotone measure-preserving maps, Duke Math. J., 80 (1995), 309-323.  doi: 10.1215/S0012-7094-95-08013-2.  Google Scholar

[16]

R. J. McCann, A convexity principle for interacting gases, Adv. Math., 128 (1997), 153-179.  doi: 10.1006/aima.1997.1634.  Google Scholar

[17]

C. Mooney, Partial regularity for singular solutions to the Monge-Ampère equation, Comm. Pure Appl. Math., 68 (2015), 1066-1084.  doi: 10.1002/cpa.21534.  Google Scholar

show all references

References:
[1]

S. AleskerS. Dar and V. Milman, A remarkable measure preserving diffeomorphism between two convex bodies in $ {\mathbb{R}}^n$, Geom. Dedicata, 74 (1999), 201-212.  doi: 10.1023/A:1005087216335.  Google Scholar

[2]

L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Second edition. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2008. x+334 pp.  Google Scholar

[3]

L. A. Caffarelli, A localization property of viscosity solutions to the Monge-Ampère equation and their strict convexity, Ann. of Math., 131 (1990), 129-134.  doi: 10.2307/1971509.  Google Scholar

[4]

L. A. Caffarelli, Some regularity properties of solutions of Monge Ampère equation, Comm. Pure Appl. Math., 44 (1991), 965-969.  doi: 10.1002/cpa.3160440809.  Google Scholar

[5]

L. A. Caffarelli, Interior $W^{2, p}$ estimates for solutions of the Monge-Ampère equation, Ann. of Math. (2), 131 (1990), 135-150.  doi: 10.2307/1971510.  Google Scholar

[6]

L. A. Caffarelli, The regularity of mappings with a convex potential, J. Amer. Math. Soc., 5 (1992), 99-104.  doi: 10.1090/S0894-0347-1992-1124980-8.  Google Scholar

[7]

G. De Philippis and A. Figalli, $W^{2, 1}$ regularity for solutions of the Monge-Ampère equation, Invent. Math., 192 (2013), 55-69.  doi: 10.1007/s00222-012-0405-4.  Google Scholar

[8]

G. De Philippis and A. Figalli, The Monge-Ampère equation and its link to optimal transportation, Bull. Amer. Math. Soc. (N.S.), 51 (2014), 527-580.  doi: 10.1090/S0273-0979-2014-01459-4.  Google Scholar

[9]

G. De PhilippisA. Figalli and O. Savin, A note on interior $W^{2, 1+\epsilon}$ estimates for the Monge-Ampère equation, Math. Ann., 357 (2013), 11-22.  doi: 10.1007/s00208-012-0895-9.  Google Scholar

[10]

A. Figalli, The Monge-Ampère Equation and Its Applications, Zürich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich, 2017. x+200 doi: 10.4171/170.  Google Scholar

[11]

A. FigalliY. Jhaveri and C. Mooney, Nonlinear bounds in Hölder spaces for the Monge-Ampère equation, J. Funct. Anal., 270 (2016), 3808-3827.   Google Scholar

[12]

A. FigalliY.-H. Kim and R. J. McCann, Hölder continuity and injectivity of optimal maps, Arch. Ration. Mech. Anal., 209 (2013), 747-795.  doi: 10.1007/s00205-013-0629-5.  Google Scholar

[13]

A. FigalliL. Rifford and C. Villani, Necessary and sufficient conditions for continuity of optimal transport maps on Riemannian manifolds, Tohoku Math. J. (2), 63 (2011), 855-876.  doi: 10.2748/tmj/1325886291.  Google Scholar

[14]

M. Gromov, Convex sets and Kähler manifolds, in Advances in Differential Geometry and Topology, World Scientific, Teaneck, NJ, 1990, 1–38.  Google Scholar

[15]

R. J. McCann, Existence and uniqueness of monotone measure-preserving maps, Duke Math. J., 80 (1995), 309-323.  doi: 10.1215/S0012-7094-95-08013-2.  Google Scholar

[16]

R. J. McCann, A convexity principle for interacting gases, Adv. Math., 128 (1997), 153-179.  doi: 10.1006/aima.1997.1634.  Google Scholar

[17]

C. Mooney, Partial regularity for singular solutions to the Monge-Ampère equation, Comm. Pure Appl. Math., 68 (2015), 1066-1084.  doi: 10.1002/cpa.21534.  Google Scholar

Figure 1.  We subtract the affine function $ \ell_\varepsilon(z): = \varepsilon(z_1+\eta_0) $ from $ u $. Because $ \mathbf{0} \in \partial ({\rm dom}(u)) $, $ u_\varepsilon|_{\partial S_\varepsilon} $ contains some vertical segments in its graph
[1]

Juhua Shi, Feida Jiang. The degenerate Monge-Ampère equations with the Neumann condition. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020297

[2]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[3]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[4]

Indranil Chowdhury, Gyula Csató, Prosenjit Roy, Firoj Sk. Study of fractional Poincaré inequalities on unbounded domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020394

[5]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[6]

Wenlong Sun, Jiaqi Cheng, Xiaoying Han. Random attractors for 2D stochastic micropolar fluid flows on unbounded domains. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 693-716. doi: 10.3934/dcdsb.2020189

[7]

Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262

[8]

Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021004

[9]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[10]

Fuensanta Andrés, Julio Muñoz, Jesús Rosado. Optimal design problems governed by the nonlocal $ p $-Laplacian equation. Mathematical Control & Related Fields, 2021, 11 (1) : 119-141. doi: 10.3934/mcrf.2020030

[11]

Thomas Y. Hou, Dong Liang. Multiscale analysis for convection dominated transport equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 281-298. doi: 10.3934/dcds.2009.23.281

[12]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[13]

Yoshihisa Morita, Kunimochi Sakamoto. Turing type instability in a diffusion model with mass transport on the boundary. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3813-3836. doi: 10.3934/dcds.2020160

[14]

Claudio Bonanno, Marco Lenci. Pomeau-Manneville maps are global-local mixing. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1051-1069. doi: 10.3934/dcds.2020309

[15]

Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045

[16]

Laure Cardoulis, Michel Cristofol, Morgan Morancey. A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020054

[17]

Ravi Anand, Dibyendu Roy, Santanu Sarkar. Some results on lightweight stream ciphers Fountain v1 & Lizard. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020128

[18]

Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031

[19]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

[20]

Guoyuan Chen, Yong Liu, Juncheng Wei. Nondegeneracy of harmonic maps from $ {{\mathbb{R}}^{2}} $ to $ {{\mathbb{S}}^{2}} $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3215-3233. doi: 10.3934/dcds.2019228

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (112)
  • HTML views (150)
  • Cited by (2)

Other articles
by authors

[Back to Top]