December  2019, 39(12): 7113-7139. doi: 10.3934/dcds.2019298

The fractional Schrödinger equation with singular potential and measure data

1. 

Instituto de Matemática Interdisciplinar, Universidad Complutense de Madrid, Plaza de Ciencias 3, 28040 Madrid, Spain

2. 

Departamento de Matemáticas, Universidad Autónoma de Madrid, Calle Francisco Tomás y Valiente 7, 28049 Madrid, Spain

Dedicated to Luis Caffarelli with deep appreciation.

Received  December 2018 Revised  April 2019 Published  September 2019

We consider the steady fractional Schrödinger equation $ L u + V u = f $ posed on a bounded domain $ \Omega $; $ L $ is an integro-differential operator, like the usual versions of the fractional Laplacian $ (-\Delta)^s $; $ V\ge 0 $ is a potential with possible singularities, and the right-hand side are integrable functions or Radon measures. We reformulate the problem via the Green function of $ (-\Delta)^s $ and prove well-posedness for functions as data. If $ V $ is bounded or mildly singular a unique solution of $ (-\Delta)^s u + V u = \mu $ exists for every Borel measure $ \mu $. On the other hand, when $ V $ is allowed to be more singular, but only on a finite set of points, a solution of $ (-\Delta)^s u + V u = \delta_x $, where $ \delta_x $ is the Dirac measure at $ x $, exists if and only if $ h(y) = V(y) |x - y|^{-(n+2s)} $ is integrable on some small ball around $ x $. We prove that the set $ Z = \{x \in \Omega : \rm{no solution of } (-\Delta)^s u + Vu = \delta_x \rm{ exists}\} $ is relevant in the following sense: a solution of $ (-\Delta)^s u + V u = \mu $ exists if and only if $ |\mu| (Z) = 0 $. Furthermore, $ Z $ is the set points where the strong maximum principle fails, in the sense that for any bounded $ f $ the solution of $ (-\Delta)^s u + Vu = f $ vanishes on $ Z $.

Citation: David Gómez-Castro, Juan Luis Vázquez. The fractional Schrödinger equation with singular potential and measure data. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7113-7139. doi: 10.3934/dcds.2019298
References:
[1]

P. Bénilan and H. Brezis, Nonlinear problems related to the Thomas-Fermi equation, Journal of Evolution Equations, 3 (2003), 673-770.  doi: 10.1007/s00028-003-0117-8.  Google Scholar

[2]

P. BénilanH. Brezis and M. G. Crandall, A semilinear equation in $L^1(R^N)$, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 2 (1975), 523-555.   Google Scholar

[3]

M. Bonforte, A. Figalli and J. Vázquez, Sharp boundary behaviour of solutions to semilinear nonlocal elliptic equations, Calculus of Variations and Partial Differential Equations, 57 (2018), Art. 57, 34 pp. doi: 10.1007/s00526-018-1321-2.  Google Scholar

[4]

M. BonforteY. Sire and J. L. Vázquez, Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains, Discrete and Continuous Dynamical Systems- Series A, 35 (2015), 5725-5767.  doi: 10.3934/dcds.2015.35.5725.  Google Scholar

[5]

M. Bonforte and J. L. Vázquez, Fractional nonlinear degenerate diffusion equations on bounded domains part I. Existence, uniqueness and upper bounds, Nonlinear Analysis, Theory, Methods and Applications, 131 (2016), 363-398.  doi: 10.1016/j.na.2015.10.005.  Google Scholar

[6]

H. BrezisM. Marcus and A. C. Ponce, A new concept of reduced measure for nonlinear elliptic equations, Comptes Rendus Mathematique, 339 (2004), 169-174.  doi: 10.1016/j.crma.2004.05.012.  Google Scholar

[7]

H. Brezis, M. Marcus and A. C. Ponce, Nonlinear elliptic equations with measures revisited, in Mathematical Aspects of Nonlinear Dispersive Equations (eds. J. Bourgain, C. Kenig and S. Klainerman), vol. 163 of Annals of Mathematics Studies, Princeton University Press, Princeton, 2007, 55-109.  Google Scholar

[8]

C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications, vol. 20 of Lecture Notes of the Unione Matematica Italiana, Springer, [Cham]; Unione Matematica Italiana, Bologna, 2016. doi: 10.1007/978-3-319-28739-3.  Google Scholar

[9]

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 23-53.  doi: 10.1016/j.anihpc.2013.02.001.  Google Scholar

[10]

L. A. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar

[11]

L. A. Caffarelli and P. R. Stinga, Fractional elliptic equations, Caccioppoli estimates and regularity, Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire, 33 (2016), 767-807.   Google Scholar

[12]

H. Chen and L. Véron, Semilinear fractional elliptic equations involving measures, Journal of Differential Equations, 257 (2014), 1457-1486.  doi: 10.1016/j.jde.2014.05.012.  Google Scholar

[13]

M. Cozzi, Interior regularity of solutions of non-local equations in Sobolev and Nikol'skii spaces, Annali di Matematica Pura ed Applicata, 196 (2017), 555-578.  doi: 10.1007/s10231-016-0586-3.  Google Scholar

[14]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bulletin des Sciences Mathematiques, 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[15]

J. I. DíazD. Gómez-Castro and J. Vázquez, The fractional Schrödinger equation with general nonnegative potentials. The weighted space approach, Nonlinear Analysis, 177 (2018), 325-360.   Google Scholar

[16]

J. I. DíazD. Gómez-CastroJ.-M. Rakotoson and R. Temam, Linear diffusion with singular absorption potential and/or unbounded convective flow: The weighted space approach, Discrete and Continuous Dynamical Systems, 38 (2018), 509-546.  doi: 10.3934/dcds.2018023.  Google Scholar

[17]

L. C. Evans, Partial Differential Equations, American Mathematical Society, Providence, Rhode Island, 1998. doi: 10.1090/gsm/019.  Google Scholar

[18]

M. FelsingerM. Kassmann and P. Voigt, The Dirichlet problem for nonlocal operators, Math. Z., 279 (2015), 779-809.  doi: 10.1007/s00209-014-1394-3.  Google Scholar

[19]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001.  Google Scholar

[20]

G. Grubb, Fractional Laplacians on domains, a development of Hörmander's theory of $\mu$-transmission pseudodifferential operators, Advances in Mathematics, 268 (2015), 478-528.  doi: 10.1016/j.aim.2014.09.018.  Google Scholar

[21]

K.-Y. Kim and P. Kim, Two-sided estimates for the transition densities of symmetric Markov processes dominated by stable-like processes in $C^{1, \eta}$ open sets, Stochastic Process. Appl., 124 (2014), 3055-3083.  doi: 10.1016/j.spa.2014.04.004.  Google Scholar

[22]

T. Kuusi, G. Mingione and Y. Sire, Nonlocal equations with measure data, in Communications in Mathematical Physics, 337 (2015), 1317–1368. doi: 10.1007/s00220-015-2356-2.  Google Scholar

[23]

L. Orsina and A. C. Ponce, On the nonexistence of Green's function and failure of the strong maximum principle, Journal de Mathématiques Pures et Appliquées, 2019. doi: 10.1016/j.matpur.2019.06.001.  Google Scholar

[24]

A. C. Ponce, Elliptic PDEs, Measures and Capacities From the Poisson Equation to Nonlinear Thomas-Fermi Problems, European Mathematical Society Publishing House, Zurich, 2016. doi: 10.4171/140.  Google Scholar

[25]

A. C. Ponce and N. Wilmet, Schrödinger operators involving singular potentials and measure data, Journal of Differential Equations, 263 (2017), 3581-3610.  doi: 10.1016/j.jde.2017.04.039.  Google Scholar

[26]

J. M. Rakotoson, Potential capacity and applications, 2018, URL http://arXiv.org/abs/1812.04061, arXiv preprint. Google Scholar

[27]

X. Ros-Oton, Nonlocal elliptic equations in bounded domains: A survey, Publicacions Matemàtiques, 60 (2016), 3-26.  doi: 10.5565/PUBLMAT_60116_01.  Google Scholar

[28]

X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, Journal des Mathematiques Pures et Appliquees, 101 (2014), 275-302.  doi: 10.1016/j.matpur.2013.06.003.  Google Scholar

[29]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978.  Google Scholar

[30]

J. L. Vázquez, On a Semilinear Equation in $\mathbb R^2$ Involving Bounded Measures, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 95 (1983), 181-202.  doi: 10.1017/S0308210500012907.  Google Scholar

show all references

References:
[1]

P. Bénilan and H. Brezis, Nonlinear problems related to the Thomas-Fermi equation, Journal of Evolution Equations, 3 (2003), 673-770.  doi: 10.1007/s00028-003-0117-8.  Google Scholar

[2]

P. BénilanH. Brezis and M. G. Crandall, A semilinear equation in $L^1(R^N)$, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 2 (1975), 523-555.   Google Scholar

[3]

M. Bonforte, A. Figalli and J. Vázquez, Sharp boundary behaviour of solutions to semilinear nonlocal elliptic equations, Calculus of Variations and Partial Differential Equations, 57 (2018), Art. 57, 34 pp. doi: 10.1007/s00526-018-1321-2.  Google Scholar

[4]

M. BonforteY. Sire and J. L. Vázquez, Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains, Discrete and Continuous Dynamical Systems- Series A, 35 (2015), 5725-5767.  doi: 10.3934/dcds.2015.35.5725.  Google Scholar

[5]

M. Bonforte and J. L. Vázquez, Fractional nonlinear degenerate diffusion equations on bounded domains part I. Existence, uniqueness and upper bounds, Nonlinear Analysis, Theory, Methods and Applications, 131 (2016), 363-398.  doi: 10.1016/j.na.2015.10.005.  Google Scholar

[6]

H. BrezisM. Marcus and A. C. Ponce, A new concept of reduced measure for nonlinear elliptic equations, Comptes Rendus Mathematique, 339 (2004), 169-174.  doi: 10.1016/j.crma.2004.05.012.  Google Scholar

[7]

H. Brezis, M. Marcus and A. C. Ponce, Nonlinear elliptic equations with measures revisited, in Mathematical Aspects of Nonlinear Dispersive Equations (eds. J. Bourgain, C. Kenig and S. Klainerman), vol. 163 of Annals of Mathematics Studies, Princeton University Press, Princeton, 2007, 55-109.  Google Scholar

[8]

C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications, vol. 20 of Lecture Notes of the Unione Matematica Italiana, Springer, [Cham]; Unione Matematica Italiana, Bologna, 2016. doi: 10.1007/978-3-319-28739-3.  Google Scholar

[9]

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 23-53.  doi: 10.1016/j.anihpc.2013.02.001.  Google Scholar

[10]

L. A. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar

[11]

L. A. Caffarelli and P. R. Stinga, Fractional elliptic equations, Caccioppoli estimates and regularity, Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire, 33 (2016), 767-807.   Google Scholar

[12]

H. Chen and L. Véron, Semilinear fractional elliptic equations involving measures, Journal of Differential Equations, 257 (2014), 1457-1486.  doi: 10.1016/j.jde.2014.05.012.  Google Scholar

[13]

M. Cozzi, Interior regularity of solutions of non-local equations in Sobolev and Nikol'skii spaces, Annali di Matematica Pura ed Applicata, 196 (2017), 555-578.  doi: 10.1007/s10231-016-0586-3.  Google Scholar

[14]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bulletin des Sciences Mathematiques, 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[15]

J. I. DíazD. Gómez-Castro and J. Vázquez, The fractional Schrödinger equation with general nonnegative potentials. The weighted space approach, Nonlinear Analysis, 177 (2018), 325-360.   Google Scholar

[16]

J. I. DíazD. Gómez-CastroJ.-M. Rakotoson and R. Temam, Linear diffusion with singular absorption potential and/or unbounded convective flow: The weighted space approach, Discrete and Continuous Dynamical Systems, 38 (2018), 509-546.  doi: 10.3934/dcds.2018023.  Google Scholar

[17]

L. C. Evans, Partial Differential Equations, American Mathematical Society, Providence, Rhode Island, 1998. doi: 10.1090/gsm/019.  Google Scholar

[18]

M. FelsingerM. Kassmann and P. Voigt, The Dirichlet problem for nonlocal operators, Math. Z., 279 (2015), 779-809.  doi: 10.1007/s00209-014-1394-3.  Google Scholar

[19]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001.  Google Scholar

[20]

G. Grubb, Fractional Laplacians on domains, a development of Hörmander's theory of $\mu$-transmission pseudodifferential operators, Advances in Mathematics, 268 (2015), 478-528.  doi: 10.1016/j.aim.2014.09.018.  Google Scholar

[21]

K.-Y. Kim and P. Kim, Two-sided estimates for the transition densities of symmetric Markov processes dominated by stable-like processes in $C^{1, \eta}$ open sets, Stochastic Process. Appl., 124 (2014), 3055-3083.  doi: 10.1016/j.spa.2014.04.004.  Google Scholar

[22]

T. Kuusi, G. Mingione and Y. Sire, Nonlocal equations with measure data, in Communications in Mathematical Physics, 337 (2015), 1317–1368. doi: 10.1007/s00220-015-2356-2.  Google Scholar

[23]

L. Orsina and A. C. Ponce, On the nonexistence of Green's function and failure of the strong maximum principle, Journal de Mathématiques Pures et Appliquées, 2019. doi: 10.1016/j.matpur.2019.06.001.  Google Scholar

[24]

A. C. Ponce, Elliptic PDEs, Measures and Capacities From the Poisson Equation to Nonlinear Thomas-Fermi Problems, European Mathematical Society Publishing House, Zurich, 2016. doi: 10.4171/140.  Google Scholar

[25]

A. C. Ponce and N. Wilmet, Schrödinger operators involving singular potentials and measure data, Journal of Differential Equations, 263 (2017), 3581-3610.  doi: 10.1016/j.jde.2017.04.039.  Google Scholar

[26]

J. M. Rakotoson, Potential capacity and applications, 2018, URL http://arXiv.org/abs/1812.04061, arXiv preprint. Google Scholar

[27]

X. Ros-Oton, Nonlocal elliptic equations in bounded domains: A survey, Publicacions Matemàtiques, 60 (2016), 3-26.  doi: 10.5565/PUBLMAT_60116_01.  Google Scholar

[28]

X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, Journal des Mathematiques Pures et Appliquees, 101 (2014), 275-302.  doi: 10.1016/j.matpur.2013.06.003.  Google Scholar

[29]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978.  Google Scholar

[30]

J. L. Vázquez, On a Semilinear Equation in $\mathbb R^2$ Involving Bounded Measures, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 95 (1983), 181-202.  doi: 10.1017/S0308210500012907.  Google Scholar

[1]

Woocheol Choi, Yong-Cheol Kim. The Malgrange-Ehrenpreis theorem for nonlocal Schrödinger operators with certain potentials. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1993-2010. doi: 10.3934/cpaa.2018095

[2]

Woocheol Choi, Yong-Cheol Kim. $L^p$ mapping properties for nonlocal Schrödinger operators with certain potentials. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5811-5834. doi: 10.3934/dcds.2018253

[3]

Marco Degiovanni, Michele Scaglia. A variational approach to semilinear elliptic equations with measure data. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1233-1248. doi: 10.3934/dcds.2011.31.1233

[4]

Jussi Behrndt, A. F. M. ter Elst. The Dirichlet-to-Neumann map for Schrödinger operators with complex potentials. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 661-671. doi: 10.3934/dcdss.2017033

[5]

Xinlin Cao, Yi-Hsuan Lin, Hongyu Liu. Simultaneously recovering potentials and embedded obstacles for anisotropic fractional Schrödinger operators. Inverse Problems & Imaging, 2019, 13 (1) : 197-210. doi: 10.3934/ipi.2019011

[6]

Holger Teismann. The Schrödinger equation with singular time-dependent potentials. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 705-722. doi: 10.3934/dcds.2000.6.705

[7]

Mouhamed Moustapha Fall, Veronica Felli. Unique continuation properties for relativistic Schrödinger operators with a singular potential. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5827-5867. doi: 10.3934/dcds.2015.35.5827

[8]

Verena Bögelein, Frank Duzaar, Ugo Gianazza. Very weak solutions of singular porous medium equations with measure data. Communications on Pure & Applied Analysis, 2015, 14 (1) : 23-49. doi: 10.3934/cpaa.2015.14.23

[9]

Mouhamed Moustapha Fall. Regularity estimates for nonlocal Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1405-1456. doi: 10.3934/dcds.2019061

[10]

Veronica Felli, Elsa M. Marchini, Susanna Terracini. On the behavior of solutions to Schrödinger equations with dipole type potentials near the singularity. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 91-119. doi: 10.3934/dcds.2008.21.91

[11]

Rémi Carles, Christof Sparber. Semiclassical wave packet dynamics in Schrödinger equations with periodic potentials. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 759-774. doi: 10.3934/dcdsb.2012.17.759

[12]

Xing Cheng, Ze Li, Lifeng Zhao. Scattering of solutions to the nonlinear Schrödinger equations with regular potentials. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 2999-3023. doi: 10.3934/dcds.2017129

[13]

Yongsheng Jiang, Huan-Song Zhou. A sharp decay estimate for nonlinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1723-1730. doi: 10.3934/cpaa.2010.9.1723

[14]

Rémi Carles. Global existence results for nonlinear Schrödinger equations with quadratic potentials. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 385-398. doi: 10.3934/dcds.2005.13.385

[15]

Zaihui Gan, Boling Guo, Jian Zhang. Blowup and global existence of the nonlinear Schrödinger equations with multiple potentials. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1303-1312. doi: 10.3934/cpaa.2009.8.1303

[16]

Vagif S. Guliyev, Ramin V. Guliyev, Mehriban N. Omarova, Maria Alessandra Ragusa. Schrödinger type operators on local generalized Morrey spaces related to certain nonnegative potentials. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 671-690. doi: 10.3934/dcdsb.2019260

[17]

Liang Zhang, X. H. Tang, Yi Chen. Infinitely many solutions for a class of perturbed elliptic equations with nonlocal operators. Communications on Pure & Applied Analysis, 2017, 16 (3) : 823-842. doi: 10.3934/cpaa.2017039

[18]

Haruya Mizutani. Strichartz estimates for Schrödinger equations with variable coefficients and unbounded potentials II. Superquadratic potentials. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2177-2210. doi: 10.3934/cpaa.2014.13.2177

[19]

Lassaad Aloui, Moez Khenissi. Boundary stabilization of the wave and Schrödinger equations in exterior domains. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 919-934. doi: 10.3934/dcds.2010.27.919

[20]

Mingqi Xiang, Patrizia Pucci, Marco Squassina, Binlin Zhang. Nonlocal Schrödinger-Kirchhoff equations with external magnetic field. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1631-1649. doi: 10.3934/dcds.2017067

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (73)
  • HTML views (68)
  • Cited by (0)

Other articles
by authors

[Back to Top]