December  2019, 39(12): 7113-7139. doi: 10.3934/dcds.2019298

The fractional Schrödinger equation with singular potential and measure data

1. 

Instituto de Matemática Interdisciplinar, Universidad Complutense de Madrid, Plaza de Ciencias 3, 28040 Madrid, Spain

2. 

Departamento de Matemáticas, Universidad Autónoma de Madrid, Calle Francisco Tomás y Valiente 7, 28049 Madrid, Spain

Dedicated to Luis Caffarelli with deep appreciation.

Received  December 2018 Revised  April 2019 Published  September 2019

We consider the steady fractional Schrödinger equation $ L u + V u = f $ posed on a bounded domain $ \Omega $; $ L $ is an integro-differential operator, like the usual versions of the fractional Laplacian $ (-\Delta)^s $; $ V\ge 0 $ is a potential with possible singularities, and the right-hand side are integrable functions or Radon measures. We reformulate the problem via the Green function of $ (-\Delta)^s $ and prove well-posedness for functions as data. If $ V $ is bounded or mildly singular a unique solution of $ (-\Delta)^s u + V u = \mu $ exists for every Borel measure $ \mu $. On the other hand, when $ V $ is allowed to be more singular, but only on a finite set of points, a solution of $ (-\Delta)^s u + V u = \delta_x $, where $ \delta_x $ is the Dirac measure at $ x $, exists if and only if $ h(y) = V(y) |x - y|^{-(n+2s)} $ is integrable on some small ball around $ x $. We prove that the set $ Z = \{x \in \Omega : \rm{no solution of } (-\Delta)^s u + Vu = \delta_x \rm{ exists}\} $ is relevant in the following sense: a solution of $ (-\Delta)^s u + V u = \mu $ exists if and only if $ |\mu| (Z) = 0 $. Furthermore, $ Z $ is the set points where the strong maximum principle fails, in the sense that for any bounded $ f $ the solution of $ (-\Delta)^s u + Vu = f $ vanishes on $ Z $.

Citation: David Gómez-Castro, Juan Luis Vázquez. The fractional Schrödinger equation with singular potential and measure data. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7113-7139. doi: 10.3934/dcds.2019298
References:
[1]

P. Bénilan and H. Brezis, Nonlinear problems related to the Thomas-Fermi equation, Journal of Evolution Equations, 3 (2003), 673-770.  doi: 10.1007/s00028-003-0117-8.  Google Scholar

[2]

P. BénilanH. Brezis and M. G. Crandall, A semilinear equation in $L^1(R^N)$, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 2 (1975), 523-555.   Google Scholar

[3]

M. Bonforte, A. Figalli and J. Vázquez, Sharp boundary behaviour of solutions to semilinear nonlocal elliptic equations, Calculus of Variations and Partial Differential Equations, 57 (2018), Art. 57, 34 pp. doi: 10.1007/s00526-018-1321-2.  Google Scholar

[4]

M. BonforteY. Sire and J. L. Vázquez, Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains, Discrete and Continuous Dynamical Systems- Series A, 35 (2015), 5725-5767.  doi: 10.3934/dcds.2015.35.5725.  Google Scholar

[5]

M. Bonforte and J. L. Vázquez, Fractional nonlinear degenerate diffusion equations on bounded domains part I. Existence, uniqueness and upper bounds, Nonlinear Analysis, Theory, Methods and Applications, 131 (2016), 363-398.  doi: 10.1016/j.na.2015.10.005.  Google Scholar

[6]

H. BrezisM. Marcus and A. C. Ponce, A new concept of reduced measure for nonlinear elliptic equations, Comptes Rendus Mathematique, 339 (2004), 169-174.  doi: 10.1016/j.crma.2004.05.012.  Google Scholar

[7]

H. Brezis, M. Marcus and A. C. Ponce, Nonlinear elliptic equations with measures revisited, in Mathematical Aspects of Nonlinear Dispersive Equations (eds. J. Bourgain, C. Kenig and S. Klainerman), vol. 163 of Annals of Mathematics Studies, Princeton University Press, Princeton, 2007, 55-109.  Google Scholar

[8]

C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications, vol. 20 of Lecture Notes of the Unione Matematica Italiana, Springer, [Cham]; Unione Matematica Italiana, Bologna, 2016. doi: 10.1007/978-3-319-28739-3.  Google Scholar

[9]

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 23-53.  doi: 10.1016/j.anihpc.2013.02.001.  Google Scholar

[10]

L. A. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar

[11]

L. A. Caffarelli and P. R. Stinga, Fractional elliptic equations, Caccioppoli estimates and regularity, Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire, 33 (2016), 767-807.   Google Scholar

[12]

H. Chen and L. Véron, Semilinear fractional elliptic equations involving measures, Journal of Differential Equations, 257 (2014), 1457-1486.  doi: 10.1016/j.jde.2014.05.012.  Google Scholar

[13]

M. Cozzi, Interior regularity of solutions of non-local equations in Sobolev and Nikol'skii spaces, Annali di Matematica Pura ed Applicata, 196 (2017), 555-578.  doi: 10.1007/s10231-016-0586-3.  Google Scholar

[14]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bulletin des Sciences Mathematiques, 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[15]

J. I. DíazD. Gómez-Castro and J. Vázquez, The fractional Schrödinger equation with general nonnegative potentials. The weighted space approach, Nonlinear Analysis, 177 (2018), 325-360.   Google Scholar

[16]

J. I. DíazD. Gómez-CastroJ.-M. Rakotoson and R. Temam, Linear diffusion with singular absorption potential and/or unbounded convective flow: The weighted space approach, Discrete and Continuous Dynamical Systems, 38 (2018), 509-546.  doi: 10.3934/dcds.2018023.  Google Scholar

[17]

L. C. Evans, Partial Differential Equations, American Mathematical Society, Providence, Rhode Island, 1998. doi: 10.1090/gsm/019.  Google Scholar

[18]

M. FelsingerM. Kassmann and P. Voigt, The Dirichlet problem for nonlocal operators, Math. Z., 279 (2015), 779-809.  doi: 10.1007/s00209-014-1394-3.  Google Scholar

[19]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001.  Google Scholar

[20]

G. Grubb, Fractional Laplacians on domains, a development of Hörmander's theory of $\mu$-transmission pseudodifferential operators, Advances in Mathematics, 268 (2015), 478-528.  doi: 10.1016/j.aim.2014.09.018.  Google Scholar

[21]

K.-Y. Kim and P. Kim, Two-sided estimates for the transition densities of symmetric Markov processes dominated by stable-like processes in $C^{1, \eta}$ open sets, Stochastic Process. Appl., 124 (2014), 3055-3083.  doi: 10.1016/j.spa.2014.04.004.  Google Scholar

[22]

T. Kuusi, G. Mingione and Y. Sire, Nonlocal equations with measure data, in Communications in Mathematical Physics, 337 (2015), 1317–1368. doi: 10.1007/s00220-015-2356-2.  Google Scholar

[23]

L. Orsina and A. C. Ponce, On the nonexistence of Green's function and failure of the strong maximum principle, Journal de Mathématiques Pures et Appliquées, 2019. doi: 10.1016/j.matpur.2019.06.001.  Google Scholar

[24]

A. C. Ponce, Elliptic PDEs, Measures and Capacities From the Poisson Equation to Nonlinear Thomas-Fermi Problems, European Mathematical Society Publishing House, Zurich, 2016. doi: 10.4171/140.  Google Scholar

[25]

A. C. Ponce and N. Wilmet, Schrödinger operators involving singular potentials and measure data, Journal of Differential Equations, 263 (2017), 3581-3610.  doi: 10.1016/j.jde.2017.04.039.  Google Scholar

[26]

J. M. Rakotoson, Potential capacity and applications, 2018, URL http://arXiv.org/abs/1812.04061, arXiv preprint. Google Scholar

[27]

X. Ros-Oton, Nonlocal elliptic equations in bounded domains: A survey, Publicacions Matemàtiques, 60 (2016), 3-26.  doi: 10.5565/PUBLMAT_60116_01.  Google Scholar

[28]

X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, Journal des Mathematiques Pures et Appliquees, 101 (2014), 275-302.  doi: 10.1016/j.matpur.2013.06.003.  Google Scholar

[29]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978.  Google Scholar

[30]

J. L. Vázquez, On a Semilinear Equation in $\mathbb R^2$ Involving Bounded Measures, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 95 (1983), 181-202.  doi: 10.1017/S0308210500012907.  Google Scholar

show all references

References:
[1]

P. Bénilan and H. Brezis, Nonlinear problems related to the Thomas-Fermi equation, Journal of Evolution Equations, 3 (2003), 673-770.  doi: 10.1007/s00028-003-0117-8.  Google Scholar

[2]

P. BénilanH. Brezis and M. G. Crandall, A semilinear equation in $L^1(R^N)$, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 2 (1975), 523-555.   Google Scholar

[3]

M. Bonforte, A. Figalli and J. Vázquez, Sharp boundary behaviour of solutions to semilinear nonlocal elliptic equations, Calculus of Variations and Partial Differential Equations, 57 (2018), Art. 57, 34 pp. doi: 10.1007/s00526-018-1321-2.  Google Scholar

[4]

M. BonforteY. Sire and J. L. Vázquez, Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains, Discrete and Continuous Dynamical Systems- Series A, 35 (2015), 5725-5767.  doi: 10.3934/dcds.2015.35.5725.  Google Scholar

[5]

M. Bonforte and J. L. Vázquez, Fractional nonlinear degenerate diffusion equations on bounded domains part I. Existence, uniqueness and upper bounds, Nonlinear Analysis, Theory, Methods and Applications, 131 (2016), 363-398.  doi: 10.1016/j.na.2015.10.005.  Google Scholar

[6]

H. BrezisM. Marcus and A. C. Ponce, A new concept of reduced measure for nonlinear elliptic equations, Comptes Rendus Mathematique, 339 (2004), 169-174.  doi: 10.1016/j.crma.2004.05.012.  Google Scholar

[7]

H. Brezis, M. Marcus and A. C. Ponce, Nonlinear elliptic equations with measures revisited, in Mathematical Aspects of Nonlinear Dispersive Equations (eds. J. Bourgain, C. Kenig and S. Klainerman), vol. 163 of Annals of Mathematics Studies, Princeton University Press, Princeton, 2007, 55-109.  Google Scholar

[8]

C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications, vol. 20 of Lecture Notes of the Unione Matematica Italiana, Springer, [Cham]; Unione Matematica Italiana, Bologna, 2016. doi: 10.1007/978-3-319-28739-3.  Google Scholar

[9]

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 23-53.  doi: 10.1016/j.anihpc.2013.02.001.  Google Scholar

[10]

L. A. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar

[11]

L. A. Caffarelli and P. R. Stinga, Fractional elliptic equations, Caccioppoli estimates and regularity, Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire, 33 (2016), 767-807.   Google Scholar

[12]

H. Chen and L. Véron, Semilinear fractional elliptic equations involving measures, Journal of Differential Equations, 257 (2014), 1457-1486.  doi: 10.1016/j.jde.2014.05.012.  Google Scholar

[13]

M. Cozzi, Interior regularity of solutions of non-local equations in Sobolev and Nikol'skii spaces, Annali di Matematica Pura ed Applicata, 196 (2017), 555-578.  doi: 10.1007/s10231-016-0586-3.  Google Scholar

[14]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bulletin des Sciences Mathematiques, 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[15]

J. I. DíazD. Gómez-Castro and J. Vázquez, The fractional Schrödinger equation with general nonnegative potentials. The weighted space approach, Nonlinear Analysis, 177 (2018), 325-360.   Google Scholar

[16]

J. I. DíazD. Gómez-CastroJ.-M. Rakotoson and R. Temam, Linear diffusion with singular absorption potential and/or unbounded convective flow: The weighted space approach, Discrete and Continuous Dynamical Systems, 38 (2018), 509-546.  doi: 10.3934/dcds.2018023.  Google Scholar

[17]

L. C. Evans, Partial Differential Equations, American Mathematical Society, Providence, Rhode Island, 1998. doi: 10.1090/gsm/019.  Google Scholar

[18]

M. FelsingerM. Kassmann and P. Voigt, The Dirichlet problem for nonlocal operators, Math. Z., 279 (2015), 779-809.  doi: 10.1007/s00209-014-1394-3.  Google Scholar

[19]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001.  Google Scholar

[20]

G. Grubb, Fractional Laplacians on domains, a development of Hörmander's theory of $\mu$-transmission pseudodifferential operators, Advances in Mathematics, 268 (2015), 478-528.  doi: 10.1016/j.aim.2014.09.018.  Google Scholar

[21]

K.-Y. Kim and P. Kim, Two-sided estimates for the transition densities of symmetric Markov processes dominated by stable-like processes in $C^{1, \eta}$ open sets, Stochastic Process. Appl., 124 (2014), 3055-3083.  doi: 10.1016/j.spa.2014.04.004.  Google Scholar

[22]

T. Kuusi, G. Mingione and Y. Sire, Nonlocal equations with measure data, in Communications in Mathematical Physics, 337 (2015), 1317–1368. doi: 10.1007/s00220-015-2356-2.  Google Scholar

[23]

L. Orsina and A. C. Ponce, On the nonexistence of Green's function and failure of the strong maximum principle, Journal de Mathématiques Pures et Appliquées, 2019. doi: 10.1016/j.matpur.2019.06.001.  Google Scholar

[24]

A. C. Ponce, Elliptic PDEs, Measures and Capacities From the Poisson Equation to Nonlinear Thomas-Fermi Problems, European Mathematical Society Publishing House, Zurich, 2016. doi: 10.4171/140.  Google Scholar

[25]

A. C. Ponce and N. Wilmet, Schrödinger operators involving singular potentials and measure data, Journal of Differential Equations, 263 (2017), 3581-3610.  doi: 10.1016/j.jde.2017.04.039.  Google Scholar

[26]

J. M. Rakotoson, Potential capacity and applications, 2018, URL http://arXiv.org/abs/1812.04061, arXiv preprint. Google Scholar

[27]

X. Ros-Oton, Nonlocal elliptic equations in bounded domains: A survey, Publicacions Matemàtiques, 60 (2016), 3-26.  doi: 10.5565/PUBLMAT_60116_01.  Google Scholar

[28]

X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, Journal des Mathematiques Pures et Appliquees, 101 (2014), 275-302.  doi: 10.1016/j.matpur.2013.06.003.  Google Scholar

[29]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978.  Google Scholar

[30]

J. L. Vázquez, On a Semilinear Equation in $\mathbb R^2$ Involving Bounded Measures, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 95 (1983), 181-202.  doi: 10.1017/S0308210500012907.  Google Scholar

[1]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

[2]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[3]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[4]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[5]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[6]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[7]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[8]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[9]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[10]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[11]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[12]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[13]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[14]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[15]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[16]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[17]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[18]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[19]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[20]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (140)
  • HTML views (151)
  • Cited by (2)

Other articles
by authors

[Back to Top]