• Previous Article
    Homogeneous solutions of stationary Navier-Stokes equations with isolated singularities on the unit sphere. Ⅲ. Two singularities
  • DCDS Home
  • This Issue
  • Next Article
    The fractional Schrödinger equation with singular potential and measure data
December  2019, 39(12): 7141-7162. doi: 10.3934/dcds.2019299

Predator-prey models with competition, Part Ⅲ: Classification of stationary solutions

1. 

École des Hautes Études en Sciences Sociales, Centre d'analyse et de mathématique sociales (CAMS), CNRS, 54 bouvelard Raspail, 75006, Paris, France

2. 

Université Paris Diderot, Université de Paris, Laboratoire Jacques-Louis Lions (CNRS UMR 7598), 8 place Aurélie Nemours, 75205, Paris CEDEX 13, France

* Corresponding author: Henri Berestycki

To Luis Caffarelli, with admiration and affection

Received  December 2018 Revised  May 2019 Published  September 2019

For a stationary system representing prey and $ N $ groups of competing predators, we show classification results about the set of positive solutions. In particular, we show that if the number of components $ N $ is too large or if the competition between different groups is too small, then the system has only constant solutions, which we then completely characterize.

Citation: Henri Berestycki, Alessandro Zilio. Predator-prey models with competition, Part Ⅲ: Classification of stationary solutions. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7141-7162. doi: 10.3934/dcds.2019299
References:
[1]

H. W. Alt, L. A. Caffarelli and A. Friedman, Variational problems with two phases and their free boundaries, Trans. Amer. Math. Soc., 282 (1984), 431–461, http://dx.doi.org/10.2307/1999245. doi: 10.1090/S0002-9947-1984-0732100-6.  Google Scholar

[2]

H. Berestycki and A. Zilio, Predators-prey models with competition, Part Ⅱ: uniform regularity estimates, In preparation. Google Scholar

[3]

H. Berestycki and A. Zilio, Predators-prey models with competition, part ⅰ: Existence, bifurcation and qualitative properties, Communications in Contemporary Mathematics, 20 (2018), 1850010, 53pp. doi: 10.1142/S0219199718500104.  Google Scholar

[4]

H. Berestycki and A. Zilio, Predator-prey models with competition: The emergence of territoriality, The American Naturalist, 193 (2019), 436-446.  doi: 10.1086/701670.  Google Scholar

[5]

L. CaffarelliS. Patrizi and V. Quitalo, On a long range segregation model, J. Eur. Math. Soc. (JEMS), 19 (2017), 3575-3628.  doi: 10.4171/JEMS/747.  Google Scholar

[6]

L. A. CaffarelliA. L. Karakhanyan and F.-H. Lin, The geometry of solutions to a segregation problem for nondivergence systems, J. Fixed Point Theory Appl., 5 (2009), 319-351.  doi: 10.1007/s11784-009-0110-0.  Google Scholar

[7]

L. A. Caffarelli and F.-H. Lin, Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries, J. Amer. Math. Soc., 21 (2008), 847-862.  doi: 10.1090/S0894-0347-08-00593-6.  Google Scholar

[8]

L. A. Caffarelli and S. Salsa, A Geometric Approach to the Free Boundary Problems, Graduate Studies in Mathematics, 68. American Mathematical Society, Providence, RI, 2005. doi: 10.1090/gsm/068.  Google Scholar

[9]

M. ContiS. Terracini and G. Verzini, Asymptotic estimates for the spatial segregation of competitive systems, Adv. Math., 195 (2005), 524-560.  doi: 10.1016/j.aim.2004.08.006.  Google Scholar

[10]

M. ContiS. Terracini and G. Verzini, A variational problem for the spatial segregation of reaction-diffusion systems, Indiana Univ. Math. J., 54 (2005), 779-815.  doi: 10.1512/iumj.2005.54.2506.  Google Scholar

[11]

E. N. Dancer and Y. H. Du, Competing species equations with diffusion, large interactions, and jumping nonlinearities, J. Differential Equations, 114 (1994), 434-475.  doi: 10.1006/jdeq.1994.1156.  Google Scholar

[12]

E. N. DancerK. Wang and Z. Zhang, Dynamics of strongly competing systems with many species, Trans. Amer. Math. Soc., 364 (2012), 961-1005.  doi: 10.1090/S0002-9947-2011-05488-7.  Google Scholar

[13]

E. Dancer and Y. Du, Positive solutions for a three-species competition system with diffusion–Ⅰ. general existence results, Nonlinear Analysis: Theory, Methods & Applications, 24 (1995), 337–357, http://www.sciencedirect.com/science/article/pii/0362546X94E0063M. doi: 10.1016/0362-546X(94)E0063-M.  Google Scholar

[14]

E. Dancer and Y. Du, Positive solutions for a three-species competition system with diffusion–Ⅱ. the case of equal birth rates, Nonlinear Analysis: Theory, Methods & Applications, 24 (1995), 359–373, http://www.sciencedirect.com/science/article/pii/0362546X94E0064N. doi: 10.1016/0362-546X(94)E0064-N.  Google Scholar

[15]

H. Jung, Ueber die kleinste Kugel, die eine räumliche Figur einschliesst, J. Reine Angew. Math., 123 (1901), 241-257.  doi: 10.1515/crll.1901.123.241.  Google Scholar

[16]

M. Mimura, Asymptotic behaviors of a parabolic system related to a planktonic prey and predator model, SIAM J. Appl. Math., 37 (1979), 499-512.  doi: 10.1137/0137039.  Google Scholar

[17]

N. Soave and A. Zilio, Uniform bounds for strongly competing systems: The optimal Lipschitz case, Arch. Ration. Mech. Anal., 218 (2015), 647-697.  doi: 10.1007/s00205-015-0867-9.  Google Scholar

[18]

S. Terracini, G. Verzini and A. Zilio, Spiraling asymptotic profiles of competition-diffusion systems, Communications on Pure and Applied Mathematics, 2019. doi: 10.1002/cpa.21823.  Google Scholar

[19]

G. Verzini and A. Zilio, Strong competition versus fractional diffusion: The case of Lotka-Volterra interaction, Comm. Partial Differential Equations, 39 (2014), 2284-2313.  doi: 10.1080/03605302.2014.890627.  Google Scholar

[20]

V. Volterra, Variations and fluctuations of the number of individuals in animal species living together, Journal du Cons. Int. Explor. Mer, 3 (1928), 3-51.  doi: 10.1093/icesjms/3.1.3.  Google Scholar

show all references

References:
[1]

H. W. Alt, L. A. Caffarelli and A. Friedman, Variational problems with two phases and their free boundaries, Trans. Amer. Math. Soc., 282 (1984), 431–461, http://dx.doi.org/10.2307/1999245. doi: 10.1090/S0002-9947-1984-0732100-6.  Google Scholar

[2]

H. Berestycki and A. Zilio, Predators-prey models with competition, Part Ⅱ: uniform regularity estimates, In preparation. Google Scholar

[3]

H. Berestycki and A. Zilio, Predators-prey models with competition, part ⅰ: Existence, bifurcation and qualitative properties, Communications in Contemporary Mathematics, 20 (2018), 1850010, 53pp. doi: 10.1142/S0219199718500104.  Google Scholar

[4]

H. Berestycki and A. Zilio, Predator-prey models with competition: The emergence of territoriality, The American Naturalist, 193 (2019), 436-446.  doi: 10.1086/701670.  Google Scholar

[5]

L. CaffarelliS. Patrizi and V. Quitalo, On a long range segregation model, J. Eur. Math. Soc. (JEMS), 19 (2017), 3575-3628.  doi: 10.4171/JEMS/747.  Google Scholar

[6]

L. A. CaffarelliA. L. Karakhanyan and F.-H. Lin, The geometry of solutions to a segregation problem for nondivergence systems, J. Fixed Point Theory Appl., 5 (2009), 319-351.  doi: 10.1007/s11784-009-0110-0.  Google Scholar

[7]

L. A. Caffarelli and F.-H. Lin, Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries, J. Amer. Math. Soc., 21 (2008), 847-862.  doi: 10.1090/S0894-0347-08-00593-6.  Google Scholar

[8]

L. A. Caffarelli and S. Salsa, A Geometric Approach to the Free Boundary Problems, Graduate Studies in Mathematics, 68. American Mathematical Society, Providence, RI, 2005. doi: 10.1090/gsm/068.  Google Scholar

[9]

M. ContiS. Terracini and G. Verzini, Asymptotic estimates for the spatial segregation of competitive systems, Adv. Math., 195 (2005), 524-560.  doi: 10.1016/j.aim.2004.08.006.  Google Scholar

[10]

M. ContiS. Terracini and G. Verzini, A variational problem for the spatial segregation of reaction-diffusion systems, Indiana Univ. Math. J., 54 (2005), 779-815.  doi: 10.1512/iumj.2005.54.2506.  Google Scholar

[11]

E. N. Dancer and Y. H. Du, Competing species equations with diffusion, large interactions, and jumping nonlinearities, J. Differential Equations, 114 (1994), 434-475.  doi: 10.1006/jdeq.1994.1156.  Google Scholar

[12]

E. N. DancerK. Wang and Z. Zhang, Dynamics of strongly competing systems with many species, Trans. Amer. Math. Soc., 364 (2012), 961-1005.  doi: 10.1090/S0002-9947-2011-05488-7.  Google Scholar

[13]

E. Dancer and Y. Du, Positive solutions for a three-species competition system with diffusion–Ⅰ. general existence results, Nonlinear Analysis: Theory, Methods & Applications, 24 (1995), 337–357, http://www.sciencedirect.com/science/article/pii/0362546X94E0063M. doi: 10.1016/0362-546X(94)E0063-M.  Google Scholar

[14]

E. Dancer and Y. Du, Positive solutions for a three-species competition system with diffusion–Ⅱ. the case of equal birth rates, Nonlinear Analysis: Theory, Methods & Applications, 24 (1995), 359–373, http://www.sciencedirect.com/science/article/pii/0362546X94E0064N. doi: 10.1016/0362-546X(94)E0064-N.  Google Scholar

[15]

H. Jung, Ueber die kleinste Kugel, die eine räumliche Figur einschliesst, J. Reine Angew. Math., 123 (1901), 241-257.  doi: 10.1515/crll.1901.123.241.  Google Scholar

[16]

M. Mimura, Asymptotic behaviors of a parabolic system related to a planktonic prey and predator model, SIAM J. Appl. Math., 37 (1979), 499-512.  doi: 10.1137/0137039.  Google Scholar

[17]

N. Soave and A. Zilio, Uniform bounds for strongly competing systems: The optimal Lipschitz case, Arch. Ration. Mech. Anal., 218 (2015), 647-697.  doi: 10.1007/s00205-015-0867-9.  Google Scholar

[18]

S. Terracini, G. Verzini and A. Zilio, Spiraling asymptotic profiles of competition-diffusion systems, Communications on Pure and Applied Mathematics, 2019. doi: 10.1002/cpa.21823.  Google Scholar

[19]

G. Verzini and A. Zilio, Strong competition versus fractional diffusion: The case of Lotka-Volterra interaction, Comm. Partial Differential Equations, 39 (2014), 2284-2313.  doi: 10.1080/03605302.2014.890627.  Google Scholar

[20]

V. Volterra, Variations and fluctuations of the number of individuals in animal species living together, Journal du Cons. Int. Explor. Mer, 3 (1928), 3-51.  doi: 10.1093/icesjms/3.1.3.  Google Scholar

Figure 1.  Pictorial description of Theorem 1.1
[1]

Lidan Wang, Lihe Wang, Chunqin Zhou. Classification of positive solutions for fully nonlinear elliptic equations in unbounded cylinders. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1241-1261. doi: 10.3934/cpaa.2021019

[2]

Meiqiang Feng, Yichen Zhang. Positive solutions of singular multiparameter p-Laplacian elliptic systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021083

[3]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[4]

Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021091

[5]

Pengyu Chen, Xuping Zhang, Zhitao Zhang. Asymptotic behavior of time periodic solutions for extended Fisher-Kolmogorov equations with delays. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021103

[6]

Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3319-3341. doi: 10.3934/dcds.2020407

[7]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[8]

Nikolaos Roidos. Expanding solutions of quasilinear parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021026

[9]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[10]

Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, , () : -. doi: 10.3934/era.2021016

[11]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[12]

Huan Zhang, Jun Zhou. Asymptotic behaviors of solutions to a sixth-order Boussinesq equation with logarithmic nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021034

[13]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[14]

Yu-Hsien Liao. Solutions and characterizations under multicriteria management systems. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021041

[15]

Masashi Wakaiki, Hideki Sano. Stability analysis of infinite-dimensional event-triggered and self-triggered control systems with Lipschitz perturbations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021021

[16]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[17]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

[18]

Claudianor O. Alves, César T. Ledesma. Multiplicity of solutions for a class of fractional elliptic problems with critical exponential growth and nonlocal Neumann condition. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021058

[19]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[20]

Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3683-3708. doi: 10.3934/dcds.2021012

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (201)
  • HTML views (154)
  • Cited by (0)

Other articles
by authors

[Back to Top]