
-
Previous Article
Homogeneous solutions of stationary Navier-Stokes equations with isolated singularities on the unit sphere. Ⅲ. Two singularities
- DCDS Home
- This Issue
-
Next Article
The fractional Schrödinger equation with singular potential and measure data
Predator-prey models with competition, Part Ⅲ: Classification of stationary solutions
1. | École des Hautes Études en Sciences Sociales, Centre d'analyse et de mathématique sociales (CAMS), CNRS, 54 bouvelard Raspail, 75006, Paris, France |
2. | Université Paris Diderot, Université de Paris, Laboratoire Jacques-Louis Lions (CNRS UMR 7598), 8 place Aurélie Nemours, 75205, Paris CEDEX 13, France |
For a stationary system representing prey and $ N $ groups of competing predators, we show classification results about the set of positive solutions. In particular, we show that if the number of components $ N $ is too large or if the competition between different groups is too small, then the system has only constant solutions, which we then completely characterize.
References:
[1] |
H. W. Alt, L. A. Caffarelli and A. Friedman, Variational problems with two phases and their free boundaries, Trans. Amer. Math. Soc., 282 (1984), 431–461, http://dx.doi.org/10.2307/1999245.
doi: 10.1090/S0002-9947-1984-0732100-6. |
[2] |
H. Berestycki and A. Zilio, Predators-prey models with competition, Part Ⅱ: uniform regularity estimates, In preparation. Google Scholar |
[3] |
H. Berestycki and A. Zilio, Predators-prey models with competition, part ⅰ: Existence, bifurcation and qualitative properties, Communications in Contemporary Mathematics, 20 (2018), 1850010, 53pp.
doi: 10.1142/S0219199718500104. |
[4] |
H. Berestycki and A. Zilio,
Predator-prey models with competition: The emergence of territoriality, The American Naturalist, 193 (2019), 436-446.
doi: 10.1086/701670. |
[5] |
L. Caffarelli, S. Patrizi and V. Quitalo,
On a long range segregation model, J. Eur. Math. Soc. (JEMS), 19 (2017), 3575-3628.
doi: 10.4171/JEMS/747. |
[6] |
L. A. Caffarelli, A. L. Karakhanyan and F.-H. Lin,
The geometry of solutions to a segregation problem for nondivergence systems, J. Fixed Point Theory Appl., 5 (2009), 319-351.
doi: 10.1007/s11784-009-0110-0. |
[7] |
L. A. Caffarelli and F.-H. Lin,
Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries, J. Amer. Math. Soc., 21 (2008), 847-862.
doi: 10.1090/S0894-0347-08-00593-6. |
[8] |
L. A. Caffarelli and S. Salsa, A Geometric Approach to the Free Boundary Problems, Graduate Studies in Mathematics, 68. American Mathematical Society, Providence, RI, 2005.
doi: 10.1090/gsm/068. |
[9] |
M. Conti, S. Terracini and G. Verzini,
Asymptotic estimates for the spatial segregation of competitive systems, Adv. Math., 195 (2005), 524-560.
doi: 10.1016/j.aim.2004.08.006. |
[10] |
M. Conti, S. Terracini and G. Verzini,
A variational problem for the spatial segregation of reaction-diffusion systems, Indiana Univ. Math. J., 54 (2005), 779-815.
doi: 10.1512/iumj.2005.54.2506. |
[11] |
E. N. Dancer and Y. H. Du,
Competing species equations with diffusion, large interactions, and jumping nonlinearities, J. Differential Equations, 114 (1994), 434-475.
doi: 10.1006/jdeq.1994.1156. |
[12] |
E. N. Dancer, K. Wang and Z. Zhang,
Dynamics of strongly competing systems with many species, Trans. Amer. Math. Soc., 364 (2012), 961-1005.
doi: 10.1090/S0002-9947-2011-05488-7. |
[13] |
E. Dancer and Y. Du, Positive solutions for a three-species competition system with diffusion–Ⅰ. general existence results, Nonlinear Analysis: Theory, Methods & Applications, 24 (1995), 337–357, http://www.sciencedirect.com/science/article/pii/0362546X94E0063M.
doi: 10.1016/0362-546X(94)E0063-M. |
[14] |
E. Dancer and Y. Du, Positive solutions for a three-species competition system with diffusion–Ⅱ. the case of equal birth rates, Nonlinear Analysis: Theory, Methods & Applications, 24 (1995), 359–373, http://www.sciencedirect.com/science/article/pii/0362546X94E0064N.
doi: 10.1016/0362-546X(94)E0064-N. |
[15] |
H. Jung,
Ueber die kleinste Kugel, die eine räumliche Figur einschliesst, J. Reine Angew. Math., 123 (1901), 241-257.
doi: 10.1515/crll.1901.123.241. |
[16] |
M. Mimura,
Asymptotic behaviors of a parabolic system related to a planktonic prey and predator model, SIAM J. Appl. Math., 37 (1979), 499-512.
doi: 10.1137/0137039. |
[17] |
N. Soave and A. Zilio,
Uniform bounds for strongly competing systems: The optimal Lipschitz case, Arch. Ration. Mech. Anal., 218 (2015), 647-697.
doi: 10.1007/s00205-015-0867-9. |
[18] |
S. Terracini, G. Verzini and A. Zilio, Spiraling asymptotic profiles of competition-diffusion systems, Communications on Pure and Applied Mathematics, 2019.
doi: 10.1002/cpa.21823. |
[19] |
G. Verzini and A. Zilio,
Strong competition versus fractional diffusion: The case of Lotka-Volterra interaction, Comm. Partial Differential Equations, 39 (2014), 2284-2313.
doi: 10.1080/03605302.2014.890627. |
[20] |
V. Volterra,
Variations and fluctuations of the number of individuals in animal species living together, Journal du Cons. Int. Explor. Mer, 3 (1928), 3-51.
doi: 10.1093/icesjms/3.1.3. |
show all references
References:
[1] |
H. W. Alt, L. A. Caffarelli and A. Friedman, Variational problems with two phases and their free boundaries, Trans. Amer. Math. Soc., 282 (1984), 431–461, http://dx.doi.org/10.2307/1999245.
doi: 10.1090/S0002-9947-1984-0732100-6. |
[2] |
H. Berestycki and A. Zilio, Predators-prey models with competition, Part Ⅱ: uniform regularity estimates, In preparation. Google Scholar |
[3] |
H. Berestycki and A. Zilio, Predators-prey models with competition, part ⅰ: Existence, bifurcation and qualitative properties, Communications in Contemporary Mathematics, 20 (2018), 1850010, 53pp.
doi: 10.1142/S0219199718500104. |
[4] |
H. Berestycki and A. Zilio,
Predator-prey models with competition: The emergence of territoriality, The American Naturalist, 193 (2019), 436-446.
doi: 10.1086/701670. |
[5] |
L. Caffarelli, S. Patrizi and V. Quitalo,
On a long range segregation model, J. Eur. Math. Soc. (JEMS), 19 (2017), 3575-3628.
doi: 10.4171/JEMS/747. |
[6] |
L. A. Caffarelli, A. L. Karakhanyan and F.-H. Lin,
The geometry of solutions to a segregation problem for nondivergence systems, J. Fixed Point Theory Appl., 5 (2009), 319-351.
doi: 10.1007/s11784-009-0110-0. |
[7] |
L. A. Caffarelli and F.-H. Lin,
Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries, J. Amer. Math. Soc., 21 (2008), 847-862.
doi: 10.1090/S0894-0347-08-00593-6. |
[8] |
L. A. Caffarelli and S. Salsa, A Geometric Approach to the Free Boundary Problems, Graduate Studies in Mathematics, 68. American Mathematical Society, Providence, RI, 2005.
doi: 10.1090/gsm/068. |
[9] |
M. Conti, S. Terracini and G. Verzini,
Asymptotic estimates for the spatial segregation of competitive systems, Adv. Math., 195 (2005), 524-560.
doi: 10.1016/j.aim.2004.08.006. |
[10] |
M. Conti, S. Terracini and G. Verzini,
A variational problem for the spatial segregation of reaction-diffusion systems, Indiana Univ. Math. J., 54 (2005), 779-815.
doi: 10.1512/iumj.2005.54.2506. |
[11] |
E. N. Dancer and Y. H. Du,
Competing species equations with diffusion, large interactions, and jumping nonlinearities, J. Differential Equations, 114 (1994), 434-475.
doi: 10.1006/jdeq.1994.1156. |
[12] |
E. N. Dancer, K. Wang and Z. Zhang,
Dynamics of strongly competing systems with many species, Trans. Amer. Math. Soc., 364 (2012), 961-1005.
doi: 10.1090/S0002-9947-2011-05488-7. |
[13] |
E. Dancer and Y. Du, Positive solutions for a three-species competition system with diffusion–Ⅰ. general existence results, Nonlinear Analysis: Theory, Methods & Applications, 24 (1995), 337–357, http://www.sciencedirect.com/science/article/pii/0362546X94E0063M.
doi: 10.1016/0362-546X(94)E0063-M. |
[14] |
E. Dancer and Y. Du, Positive solutions for a three-species competition system with diffusion–Ⅱ. the case of equal birth rates, Nonlinear Analysis: Theory, Methods & Applications, 24 (1995), 359–373, http://www.sciencedirect.com/science/article/pii/0362546X94E0064N.
doi: 10.1016/0362-546X(94)E0064-N. |
[15] |
H. Jung,
Ueber die kleinste Kugel, die eine räumliche Figur einschliesst, J. Reine Angew. Math., 123 (1901), 241-257.
doi: 10.1515/crll.1901.123.241. |
[16] |
M. Mimura,
Asymptotic behaviors of a parabolic system related to a planktonic prey and predator model, SIAM J. Appl. Math., 37 (1979), 499-512.
doi: 10.1137/0137039. |
[17] |
N. Soave and A. Zilio,
Uniform bounds for strongly competing systems: The optimal Lipschitz case, Arch. Ration. Mech. Anal., 218 (2015), 647-697.
doi: 10.1007/s00205-015-0867-9. |
[18] |
S. Terracini, G. Verzini and A. Zilio, Spiraling asymptotic profiles of competition-diffusion systems, Communications on Pure and Applied Mathematics, 2019.
doi: 10.1002/cpa.21823. |
[19] |
G. Verzini and A. Zilio,
Strong competition versus fractional diffusion: The case of Lotka-Volterra interaction, Comm. Partial Differential Equations, 39 (2014), 2284-2313.
doi: 10.1080/03605302.2014.890627. |
[20] |
V. Volterra,
Variations and fluctuations of the number of individuals in animal species living together, Journal du Cons. Int. Explor. Mer, 3 (1928), 3-51.
doi: 10.1093/icesjms/3.1.3. |

[1] |
Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318 |
[2] |
Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045 |
[3] |
Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272 |
[4] |
Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439 |
[5] |
José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091 |
[6] |
Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316 |
[7] |
Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119 |
[8] |
Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246 |
[9] |
Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002 |
[10] |
Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354 |
[11] |
Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020436 |
[12] |
Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020469 |
[13] |
Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020407 |
[14] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020450 |
[15] |
Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021002 |
[16] |
Yi Guan, Michal Fečkan, Jinrong Wang. Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1157-1176. doi: 10.3934/dcds.2020313 |
[17] |
Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331 |
[18] |
Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020461 |
[19] |
Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127 |
[20] |
Yutong Chen, Jiabao Su. Nontrivial solutions for the fractional Laplacian problems without asymptotic limits near both infinity and zero. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021007 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]