All $ (-1) $-homogeneous axisymmetric no-swirl solutions of incompressible stationary Navier-Stokes equations in three dimension which are smooth on the unit sphere minus north and south poles have been classified in our earlier work as a four dimensional surface with boundary. In this paper, we establish near the no-swirl solution surface existence, non-existence and uniqueness results on $ (-1) $-homogeneous axisymmetric solutions with nonzero swirl which are smooth on the unit sphere minus north and south poles.
Citation: |
[1] | M. A. Goldshtik, A paradoxical solution of the Navier-Stokes equations, Prikl. Mat. Mekh., 24 (1960), 610-621. Transl., J. Appl. Math. Mech., 24 (1960), 913-929. doi: 10.1016/0021-8928(60)90070-8. |
[2] | L. Landau, A new exact solution of Navier-Stokes equations, C. R. (Doklady) Acad. Sci. URSS (N.S.), 43 (1944), 286-288. |
[3] | L. Li, Y. Y. Li and X. Yan, Homogeneous solutions of stationary Navier-Stokes equations with isolated singularities on the unit sphere. Ⅰ. One singularity, Arch. Ration. Mech. Anal., 227 (2018), 1091-1163. doi: 10.1007/s00205-017-1181-5. |
[4] | L. Li, Y. Y. Li and X. Yan, Homogeneous solutions of stationary Navier-Stokes equations with isolated singularities on the unit sphere. Ⅱ. Classification of axisymmetric no-swirl solutions, Journal of Differential Equations, 264 (2018), 6082-6108. doi: 10.1016/j.jde.2018.01.028. |
[5] | L. Nirenberg, Topics in Nonlinear Functional Analysis, Courant Lecture Notes in Mathematics, vol. 6., New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2001. doi: 10.1090/cln/006. |
[6] | A. F. Pillow and R. Paull, Conically similar viscous flows. Part 1. Basic conservation principles and characterization of axial causes in swirl-free flow, Journal of Fluid Mechanics, 155 (1985), 327-341. doi: 10.1017/S0022112085001835. |
[7] | A. F. Pillow and R. Paull, Conically similar viscous flows. Part 2. One-parameter swirl-free flows, Journal of Fluid Mechanics, 155 (1985), 343-358. doi: 10.1017/S0022112085001847. |
[8] | A. F. Pillow and R. Paull, Conically similar viscous flows. Part 3. Characterization of axial causes in swirling flow and the one-parameter flow generated by a uniform half-line source of kinematic swirl angular momentum, Journal of Fluid Mechanics, 155 (1985), 359-379. doi: 10.1017/S0022112085001859. |
[9] | J. Serrin, The swirling vortex, Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci., 271 (1972), 325-360. doi: 10.1098/rsta.1972.0013. |
[10] | N. A. Slezkin, On an exact solution of the equations of viscous flow, Uch. zap. MGU, 2 (1934), 89-90. |
[11] | H. B. Squire, The round laminar jet, Quart. J. Mech. Appl. Math., 4 (1951), 321-329. doi: 10.1093/qjmam/4.3.321. |
[12] | V. Šverák, On Landau's solutions of the Navier-Stokes equations, Problems in Mathematical Analysis, No. 61. J. Math. Sci., 179 (2011), 208–228. arXiv: math/0604550. doi: 10.1007/s10958-011-0590-5. |
[13] | G. Tian and Z. P. Xin, One-point singular solutions to the Navier-Stokes equations, Topol. Methods Nonlinear Anal., 11 (1998), 135-145. doi: 10.12775/TMNA.1998.008. |
[14] | C. Y. Wang, Exact solutions of the steady state Navier-Stokes equation, Annu. Rev. Fluid Mech., 23 (1991), 159-177. |
[15] | V. I. Yatseyev, On a class of exact solutions of the equations of motion of a viscous fluid, 1950. |