• Previous Article
    A new proof of the boundedness results for stable solutions to semilinear elliptic equations
  • DCDS Home
  • This Issue
  • Next Article
    Homogeneous solutions of stationary Navier-Stokes equations with isolated singularities on the unit sphere. Ⅲ. Two singularities
December  2019, 39(12): 7213-7248. doi: 10.3934/dcds.2019301

Free boundaries subject to topological constraints

1. 

Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA

2. 

Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago 7820436, Chile

* Corresponding author

Received  January 2019 Revised  May 2019 Published  September 2019

Fund Project: Supported in part by NSF Grant DMS 1500771, a Simons Fellowship, and Simons Foundation grant (601948, DJ). NK was partially supported by Proyecto FONDECYT Iniciación No. 11160981.

We discuss the extent to which solutions to one-phase free boundary problems can be characterized according to their topological complexity. Our questions are motivated by fundamental work of Luis Caffarelli on free boundaries and by striking results of T. Colding and W. Minicozzi concerning finitely connected, embedded, minimal surfaces. We review our earlier work on the simplest case, one-phase free boundaries in the plane in which the positive phase is simply connected. We also prove a new, purely topological, effective removable singularities theorem for free boundaries. At the same time, we formulate some open problems concerning the multiply connected case and make connections with the theory of minimal surfaces and semilinear variational problems.

Citation: David Jerison, Nikola Kamburov. Free boundaries subject to topological constraints. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7213-7248. doi: 10.3934/dcds.2019301
References:
[1]

H. W. Alt and L. A. Caffarelli, Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math., 325 (1981), 105-144.   Google Scholar

[2]

H. W. AltL. A. Caffarelli and A. Friedman, Variational problems with two phases and their free boundaries, Trans. Amer. Math. Soc., 282 (1984), 431-461.  doi: 10.1090/S0002-9947-1984-0732100-6.  Google Scholar

[3]

G. BakerP. Saffman and J. Sheffield, Structure of a linear array of hollow vortices of finite cross-section, Journal of Fluid Mechanics, 74 (1976), 469-476.  doi: 10.1017/S0022112076001894.  Google Scholar

[4]

H. BerestyckiL. Caffarelli and L. Nirenberg, Monotonicity for elliptic equations in unbounded Lipschitz domains, Comm. Pure and Appl. Math., 50 (1997), 1089-1111.  doi: 10.1002/(SICI)1097-0312(199711)50:11<1089::AID-CPA2>3.0.CO;2-6.  Google Scholar

[5]

L. A. Caffarelli and S. Salsa, A Geometric Approach to Free Boundary Problems, vol. 68 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2005. doi: 10.1090/gsm/068.  Google Scholar

[6]

L. A. Caffarelli, A Harnack inequality approach to the regularity of free boundaries. Ⅰ. Lipschitz free boundaries are $C^{1, \alpha}$, Rev. Mat. Iberoamericana, 3 (1987), 139-162.  doi: 10.4171/RMI/47.  Google Scholar

[7]

L. A. Caffarelli, A Harnack inequality approach to the regularity of free boundaries. Ⅲ. Existence theory, compactness, and dependence on $X$, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 15 (1988), 583–602 (1989).  Google Scholar

[8]

L. A. Caffarelli, A Harnack inequality approach to the regularity of free boundaries. Ⅱ. Flat free boundaries are Lipschitz, Comm. Pure Appl. Math., 42 (1989), 55-78.  doi: 10.1002/cpa.3160420105.  Google Scholar

[9]

O. Chodosh and D. Maximo, On the topology and index of minimal surfaces, Journal of Differential Geometry, 104 (2016), 399-418.  doi: 10.4310/jdg/1478138547.  Google Scholar

[10]

H. I. Choi and R. Schoen, The space of minimal embeddings of a surface into a three-dimensional manifold of positive Ricci curvature, Inventiones Mathematicae, 81 (1985), 387-394.  doi: 10.1007/BF01388577.  Google Scholar

[11]

T. H. Colding and W. P. Minicozzi Ⅱ, The Calabi-Yau conjectures for embedded surfaces, Annals of Mathematics, 167 (2008), 211-243.  doi: 10.4007/annals.2008.167.211.  Google Scholar

[12]

T. H. Colding and W. P. Minicozzi Ⅱ, On the structure of embedded minimal annuli, International Mathematics Research Notices, 2002 (2002), 1539-1552.  doi: 10.1155/S1073792802112128.  Google Scholar

[13]

T. H. Colding and W. P. Minicozzi Ⅱ, The space of embedded minimal surfaces of fixed genus in a 3-manifold. Ⅲ. Planar domains, Ann. of Math. (2), 160 (2004), 523–572. doi: 10.4007/annals.2004.160.523.  Google Scholar

[14]

T. H. Colding and W. P. Minicozzi Ⅱ, The space of embedded minimal surfaces of fixed genus in a 3-manifold. Ⅳ. Locally simply connected, Ann. of Math. (2), 160 (2004), 573–615. doi: 10.4007/annals.2004.160.573.  Google Scholar

[15]

A. Farina and E. Valdinoci, Flattening results for elliptic PDEs in unbounded domains with applications to overdetermined problems, Archive for Rational Mechanics and Analysis, 195 (2010), 1025-1058.  doi: 10.1007/s00205-009-0227-8.  Google Scholar

[16]

L. HauswirthF. Hélein and F. Pacard, On an overdetermined elliptic problem, Pacific J. Math., 250 (2011), 319-334.  doi: 10.2140/pjm.2011.250.319.  Google Scholar

[17]

D. Jerison and N. Kamburov, Structure of one-phase free boundaries in the plane, International Mathematics Research Notices, 2016 (2016), 5922-5987.  doi: 10.1093/imrn/rnv339.  Google Scholar

[18]

D. Jerison and K. Perera, Higher critical points in an elliptic free boundary problem, J. Geom Anal., 28 (2018), 1258-1294.  doi: 10.1007/s12220-017-9862-8.  Google Scholar

[19]

D. KhavinsonE. Lundberg and R. Teodorescu, An overdetermined problem in potential theory, Pacific J. Math., 265 (2013), 85-111.  doi: 10.2140/pjm.2013.265.85.  Google Scholar

[20]

Y. Liu, K. Wang and J. Wei, On one phase free boundary problem in $\mathbb{R}^n$, preprint, arXiv: 1705.07345. Google Scholar

[21]

Y. Liu, K. Wang and J. Wei, Half space theorem for the Allen-Cahn equation, preprint, arXiv: 1901.07671. Google Scholar

[22]

W. H. Meeks Ⅲ and H. Rosenberg, The uniqueness of the helicoid, Annals of Mathematics, 161 (2005), 727-758.  doi: 10.4007/annals.2005.161.727.  Google Scholar

[23]

A. RosD. Ruiz and P. Sicbaldi, A rigidity result for overdetermined elliptic problems in the plane, Communications on Pure and Applied Mathematics, 70 (2017), 1223-1252.  doi: 10.1002/cpa.21696.  Google Scholar

[24]

A. Ros and P. Sicbaldi, Geometry and topology of some overdetermined elliptic problems, J. Differential Equations, 255 (2013), 951-977.  doi: 10.1016/j.jde.2013.04.027.  Google Scholar

[25]

R. Schoen, Uniqueness, symmetry, and embeddedness of minimal surfaces, Journal of Differential Geometry, 18 (1983), 791-809.  doi: 10.4310/jdg/1214438183.  Google Scholar

[26]

M. Traizet, Classification of the solutions to an overdetermined elliptic problem in the plane, Geom. Funct. Anal., 24 (2014), 690-720.  doi: 10.1007/s00039-014-0268-5.  Google Scholar

[27]

K. Wang, The structure of finite Morse index solutions to two free boundary problems in $\mathbb{R}^2$, preprint, arXiv: 1506.00491. Google Scholar

[28]

K. Wang and J. Wei, On Serrin's overdetermined problem and a conjecture of Berestycki, Caffarelli and Nirenberg, Comm. Partial Differential Equations, 44 (2019), 837–858, arXiv: 1502.04680. doi: 10.1080/03605302.2019.1611846.  Google Scholar

[29]

K. Wang and J. Wei, Finite Morse index implies finite ends, Comm. Pure Appl. Math., 72 (2019), 1044–1119, arXiv: 1705.06831. doi: 10.1002/cpa.21812.  Google Scholar

[30]

G. S. Weiss, Partial regularity for weak solutions of an elliptic free boundary problem, Comm. Partial Differential Equations, 23 (1998), 439-455.  doi: 10.1080/03605309808821352.  Google Scholar

[31]

B. White, Curvature estimates and compactness theorems in 3-manifolds for surfaces that are stationary for parametric elliptic functionals, Inventiones Mathematicae, 88 (1987), 243-256.  doi: 10.1007/BF01388908.  Google Scholar

show all references

References:
[1]

H. W. Alt and L. A. Caffarelli, Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math., 325 (1981), 105-144.   Google Scholar

[2]

H. W. AltL. A. Caffarelli and A. Friedman, Variational problems with two phases and their free boundaries, Trans. Amer. Math. Soc., 282 (1984), 431-461.  doi: 10.1090/S0002-9947-1984-0732100-6.  Google Scholar

[3]

G. BakerP. Saffman and J. Sheffield, Structure of a linear array of hollow vortices of finite cross-section, Journal of Fluid Mechanics, 74 (1976), 469-476.  doi: 10.1017/S0022112076001894.  Google Scholar

[4]

H. BerestyckiL. Caffarelli and L. Nirenberg, Monotonicity for elliptic equations in unbounded Lipschitz domains, Comm. Pure and Appl. Math., 50 (1997), 1089-1111.  doi: 10.1002/(SICI)1097-0312(199711)50:11<1089::AID-CPA2>3.0.CO;2-6.  Google Scholar

[5]

L. A. Caffarelli and S. Salsa, A Geometric Approach to Free Boundary Problems, vol. 68 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2005. doi: 10.1090/gsm/068.  Google Scholar

[6]

L. A. Caffarelli, A Harnack inequality approach to the regularity of free boundaries. Ⅰ. Lipschitz free boundaries are $C^{1, \alpha}$, Rev. Mat. Iberoamericana, 3 (1987), 139-162.  doi: 10.4171/RMI/47.  Google Scholar

[7]

L. A. Caffarelli, A Harnack inequality approach to the regularity of free boundaries. Ⅲ. Existence theory, compactness, and dependence on $X$, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 15 (1988), 583–602 (1989).  Google Scholar

[8]

L. A. Caffarelli, A Harnack inequality approach to the regularity of free boundaries. Ⅱ. Flat free boundaries are Lipschitz, Comm. Pure Appl. Math., 42 (1989), 55-78.  doi: 10.1002/cpa.3160420105.  Google Scholar

[9]

O. Chodosh and D. Maximo, On the topology and index of minimal surfaces, Journal of Differential Geometry, 104 (2016), 399-418.  doi: 10.4310/jdg/1478138547.  Google Scholar

[10]

H. I. Choi and R. Schoen, The space of minimal embeddings of a surface into a three-dimensional manifold of positive Ricci curvature, Inventiones Mathematicae, 81 (1985), 387-394.  doi: 10.1007/BF01388577.  Google Scholar

[11]

T. H. Colding and W. P. Minicozzi Ⅱ, The Calabi-Yau conjectures for embedded surfaces, Annals of Mathematics, 167 (2008), 211-243.  doi: 10.4007/annals.2008.167.211.  Google Scholar

[12]

T. H. Colding and W. P. Minicozzi Ⅱ, On the structure of embedded minimal annuli, International Mathematics Research Notices, 2002 (2002), 1539-1552.  doi: 10.1155/S1073792802112128.  Google Scholar

[13]

T. H. Colding and W. P. Minicozzi Ⅱ, The space of embedded minimal surfaces of fixed genus in a 3-manifold. Ⅲ. Planar domains, Ann. of Math. (2), 160 (2004), 523–572. doi: 10.4007/annals.2004.160.523.  Google Scholar

[14]

T. H. Colding and W. P. Minicozzi Ⅱ, The space of embedded minimal surfaces of fixed genus in a 3-manifold. Ⅳ. Locally simply connected, Ann. of Math. (2), 160 (2004), 573–615. doi: 10.4007/annals.2004.160.573.  Google Scholar

[15]

A. Farina and E. Valdinoci, Flattening results for elliptic PDEs in unbounded domains with applications to overdetermined problems, Archive for Rational Mechanics and Analysis, 195 (2010), 1025-1058.  doi: 10.1007/s00205-009-0227-8.  Google Scholar

[16]

L. HauswirthF. Hélein and F. Pacard, On an overdetermined elliptic problem, Pacific J. Math., 250 (2011), 319-334.  doi: 10.2140/pjm.2011.250.319.  Google Scholar

[17]

D. Jerison and N. Kamburov, Structure of one-phase free boundaries in the plane, International Mathematics Research Notices, 2016 (2016), 5922-5987.  doi: 10.1093/imrn/rnv339.  Google Scholar

[18]

D. Jerison and K. Perera, Higher critical points in an elliptic free boundary problem, J. Geom Anal., 28 (2018), 1258-1294.  doi: 10.1007/s12220-017-9862-8.  Google Scholar

[19]

D. KhavinsonE. Lundberg and R. Teodorescu, An overdetermined problem in potential theory, Pacific J. Math., 265 (2013), 85-111.  doi: 10.2140/pjm.2013.265.85.  Google Scholar

[20]

Y. Liu, K. Wang and J. Wei, On one phase free boundary problem in $\mathbb{R}^n$, preprint, arXiv: 1705.07345. Google Scholar

[21]

Y. Liu, K. Wang and J. Wei, Half space theorem for the Allen-Cahn equation, preprint, arXiv: 1901.07671. Google Scholar

[22]

W. H. Meeks Ⅲ and H. Rosenberg, The uniqueness of the helicoid, Annals of Mathematics, 161 (2005), 727-758.  doi: 10.4007/annals.2005.161.727.  Google Scholar

[23]

A. RosD. Ruiz and P. Sicbaldi, A rigidity result for overdetermined elliptic problems in the plane, Communications on Pure and Applied Mathematics, 70 (2017), 1223-1252.  doi: 10.1002/cpa.21696.  Google Scholar

[24]

A. Ros and P. Sicbaldi, Geometry and topology of some overdetermined elliptic problems, J. Differential Equations, 255 (2013), 951-977.  doi: 10.1016/j.jde.2013.04.027.  Google Scholar

[25]

R. Schoen, Uniqueness, symmetry, and embeddedness of minimal surfaces, Journal of Differential Geometry, 18 (1983), 791-809.  doi: 10.4310/jdg/1214438183.  Google Scholar

[26]

M. Traizet, Classification of the solutions to an overdetermined elliptic problem in the plane, Geom. Funct. Anal., 24 (2014), 690-720.  doi: 10.1007/s00039-014-0268-5.  Google Scholar

[27]

K. Wang, The structure of finite Morse index solutions to two free boundary problems in $\mathbb{R}^2$, preprint, arXiv: 1506.00491. Google Scholar

[28]

K. Wang and J. Wei, On Serrin's overdetermined problem and a conjecture of Berestycki, Caffarelli and Nirenberg, Comm. Partial Differential Equations, 44 (2019), 837–858, arXiv: 1502.04680. doi: 10.1080/03605302.2019.1611846.  Google Scholar

[29]

K. Wang and J. Wei, Finite Morse index implies finite ends, Comm. Pure Appl. Math., 72 (2019), 1044–1119, arXiv: 1705.06831. doi: 10.1002/cpa.21812.  Google Scholar

[30]

G. S. Weiss, Partial regularity for weak solutions of an elliptic free boundary problem, Comm. Partial Differential Equations, 23 (1998), 439-455.  doi: 10.1080/03605309808821352.  Google Scholar

[31]

B. White, Curvature estimates and compactness theorems in 3-manifolds for surfaces that are stationary for parametric elliptic functionals, Inventiones Mathematicae, 88 (1987), 243-256.  doi: 10.1007/BF01388908.  Google Scholar

Figure 1.  Mathematica plot of the free boundary of the double hairpin solution $ H_a(z) $ for $ a = 1/4 $, $ a = 1 $ and $ a = 2 $. Note that $ z = x_1 + i x_2 $ and $ x_2 $ is the horizontal axis in the diagram
Figure 2.  An illustration of the three cases for the free boundary $ F(u)\cap B_r(z) $ of a solution $ u $ having simply connected positive phase $ \mathbb{D}^+(u) $
Figure 3.  Illustrating $ \Omega $ in Case 4 of the proof of Lemma 3.6, whose existence is ruled out
Figure 4.  The conformal diffeomorphism $ U_a = H_a + i \tilde{H}_a $ mapping the right half of the positive phase $ \mathcal{D}_a = \Omega_a \cap \{x_1>0\} $ onto the slit domain $ \mathcal{S}_a $
Figure 5.  Mathematica plot of the free boundary of the Scherk solution $ S_s(x_1, x_2) $ for asymptotic slopes $ s = 1/8 $, $ s = 1/2 $ and $ s = 7/8 $. Note that in the diagram $ x_2 $ is the horizontal axis
Figure 6.  Mapping the subdomain $ \mathcal{D}^{\text{BSS}}_s $ of the positive phase of the Scherk solution $ S_s $ conformally onto the strip $ \mathcal{S}_l $ under $ U_s^{\text{BSS}} = S_s + i \tilde{S}_s. $ Note that $ Q_{\pm} $ is a saddle point of $ S_s $ with $ Q_{\pm}A_{\pm} $ and $ Q_{\pm}E_{\pm} $ being a steepest descent and a steepest ascent path from $ Q_{\pm} $, respectively
[1]

Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817

[2]

Mingxin Wang, Qianying Zhang. Dynamics for the diffusive Leslie-Gower model with double free boundaries. Discrete & Continuous Dynamical Systems, 2018, 38 (5) : 2591-2607. doi: 10.3934/dcds.2018109

[3]

Weiyi Zhang, Zuhan Liu, Ling Zhou. Dynamics of a nonlocal diffusive logistic model with free boundaries in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3767-3784. doi: 10.3934/dcdsb.2020256

[4]

Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021009

[5]

Craig Cowan. Supercritical elliptic problems involving a Cordes like operator. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021037

[6]

John Villavert. On problems with weighted elliptic operator and general growth nonlinearities. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021023

[7]

Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065

[8]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[9]

Huy Dinh, Harbir Antil, Yanlai Chen, Elena Cherkaev, Akil Narayan. Model reduction for fractional elliptic problems using Kato's formula. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021004

[10]

Kazuhiro Kurata, Yuki Osada. Variational problems associated with a system of nonlinear Schrödinger equations with three wave interaction. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021100

[11]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

[12]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[13]

Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184

[14]

Claudianor O. Alves, César T. Ledesma. Multiplicity of solutions for a class of fractional elliptic problems with critical exponential growth and nonlocal Neumann condition. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021058

[15]

Hirokazu Saito, Xin Zhang. Unique solvability of elliptic problems associated with two-phase incompressible flows in unbounded domains. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021051

[16]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[17]

Lei Zhang, Luming Jia. Near-field imaging for an obstacle above rough surfaces with limited aperture data. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021024

[18]

Yang Zhang. A free boundary problem of the cancer invasion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021092

[19]

Zhenbing Gong, Yanping Chen, Wenyu Tao. Jump and variational inequalities for averaging operators with variable kernels. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021045

[20]

Aurelia Dymek. Proximality of multidimensional $ \mathscr{B} $-free systems. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3709-3724. doi: 10.3934/dcds.2021013

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (121)
  • HTML views (155)
  • Cited by (0)

Other articles
by authors

[Back to Top]