January  2020, 40(1): 1-32. doi: 10.3934/dcds.2020001

Stationary states of the cubic conformal flow on $ \mathbb{S}^3 $

1. 

Institute of Physics, Jagiellonian University, Kraków, Poland

2. 

Department of Mathematics, McMaster University, Hamilton, Ontario L8S 4K1, Canada

Received  August 2018 Published  October 2019

Fund Project: This research was supported by the Polish National Science Centre grant no. 2017/26/A/ST2/00530

We consider the resonant system of amplitude equations for the conformally invariant cubic wave equation on the three-sphere. Using the local bifurcation theory, we characterize all stationary states that bifurcate from the first two eigenmodes. Thanks to the variational formulation of the resonant system and energy conservation, we also determine variational characterization and stability of the bifurcating states. For the lowest eigenmode, we obtain two orbitally stable families of the bifurcating stationary states: one is a constrained maximizer of energy and the other one is a local constrained minimizer of the energy, where the constraints are due to other conserved quantities of the resonant system. For the second eigenmode, we obtain two local constrained minimizers of the energy, which are also orbitally stable in the time evolution. All other bifurcating states are saddle points of energy under these constraints and their stability in the time evolution is unknown.

Citation: Piotr Bizoń, Dominika Hunik-Kostyra, Dmitry Pelinovsky. Stationary states of the cubic conformal flow on $ \mathbb{S}^3 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 1-32. doi: 10.3934/dcds.2020001
References:
[1]

A. Biasi, P. Bizoń, B. Craps and O. Evnin, Exact lowest-Landau-level solutions for vortex precession in Bose-Einstein condensates, Phys. Rev. A, 96 (2017), 053615. Google Scholar

[2]

A. BiasiP. Bizoń and O. Evnin, Solvable cubic resonant systems, Commun. Math. Phys., 369 (2019), 433-456.  doi: 10.1007/s00220-019-03365-z.  Google Scholar

[3]

P. BizońB. CrapsO. EvninD. HunikV. Luyten and M. Maliborski, Conformal flow on $\mathbb{S}^3$ and weak field integrability in $AdS_4$, Commun. Math. Phys., 353 (2017), 1179-1199.  doi: 10.1007/s00220-017-2896-8.  Google Scholar

[4]

P. BizońD. Hunik–Kostyra and D. Pelinovsky, Ground state of the conformal flow on $\mathbb{S}^3$, Commun. Pure Appl. Math., 72 (2019), 1123-1151.  doi: 10.1002/cpa.21815.  Google Scholar

[5]

S. N. Chow and J. K. Hale, Methods of Bifurcation Theory, Undergraduate Texts in Mathematics, 251, Springer-Verlag, New York, 1982. doi: 10.1007/978-1-4613-8159-4.  Google Scholar

[6]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal., 8 (1971), 321-340.  doi: 10.1016/0022-1236(71)90015-2.  Google Scholar

[7]

P. GérardP. Germain and L. Thomann, On the cubic lowest Landau level equation, Arch. Rat. Mech. Appl., 231 (2019), 1073-1128.  doi: 10.1007/s00205-018-1295-4.  Google Scholar

[8]

P. Gérard and S. Grellier, The cubic Szegő equation, Ann. Scient. Éc. Norm. Sup., 43 (2010), 761-810.  doi: 10.24033/asens.2133.  Google Scholar

[9]

P. Gérard and S. Grellier, Invariant tori for the cubic Szegő equation, Invent. Math., 187 (2012), 707-754.  doi: 10.1007/s00222-011-0342-7.  Google Scholar

[10]

P. Gérard and E. Lenzmann, A Lax pair structure for the half-wave maps equation, Lett. Math. Phys., 108 (2018), 1635-1648.  doi: 10.1007/s11005-017-1044-x.  Google Scholar

[11]

P. GermainZ. Hani and L. Thomann, On the continuous resonant equation for NLS: I. Deterministic analysis, J. Math. Pur. App., 105 (2016), 131-163.  doi: 10.1016/j.matpur.2015.10.002.  Google Scholar

[12]

M. GrillakisJ. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry. Ⅱ, J. Funct. Anal., 94 (1990), 308-348.  doi: 10.1016/0022-1236(90)90016-E.  Google Scholar

[13]

E. Lenzmann and A. Schikorra, On energy-critical half-wave maps to $\mathcal{S}^2$, Invent. Math., 213 (2018), 1-82.  doi: 10.1007/s00222-018-0785-1.  Google Scholar

[14] D. E. Pelinovsky, Localization in Periodic Potentials: From Schrödinger Operators to the Gross-Pitaevskii Equation, LMS Lecture Note Series, 390, Cambridge University Press, Cambridge, 2011.  doi: 10.1017/CBO9780511997754.  Google Scholar
[15]

O. Pocovnicu, Traveling waves for the cubic Szegő equation on the real line, Anal. PDE, 4 (2011), 379-404.  doi: 10.2140/apde.2011.4.379.  Google Scholar

[16]

J. Thirouin, Classification of traveling waves for a quadratic Szegő equation, Discr. Cont. Dynam. Syst., 39 (2019), 3099-3122.  doi: 10.3934/dcds.2019128.  Google Scholar

show all references

References:
[1]

A. Biasi, P. Bizoń, B. Craps and O. Evnin, Exact lowest-Landau-level solutions for vortex precession in Bose-Einstein condensates, Phys. Rev. A, 96 (2017), 053615. Google Scholar

[2]

A. BiasiP. Bizoń and O. Evnin, Solvable cubic resonant systems, Commun. Math. Phys., 369 (2019), 433-456.  doi: 10.1007/s00220-019-03365-z.  Google Scholar

[3]

P. BizońB. CrapsO. EvninD. HunikV. Luyten and M. Maliborski, Conformal flow on $\mathbb{S}^3$ and weak field integrability in $AdS_4$, Commun. Math. Phys., 353 (2017), 1179-1199.  doi: 10.1007/s00220-017-2896-8.  Google Scholar

[4]

P. BizońD. Hunik–Kostyra and D. Pelinovsky, Ground state of the conformal flow on $\mathbb{S}^3$, Commun. Pure Appl. Math., 72 (2019), 1123-1151.  doi: 10.1002/cpa.21815.  Google Scholar

[5]

S. N. Chow and J. K. Hale, Methods of Bifurcation Theory, Undergraduate Texts in Mathematics, 251, Springer-Verlag, New York, 1982. doi: 10.1007/978-1-4613-8159-4.  Google Scholar

[6]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal., 8 (1971), 321-340.  doi: 10.1016/0022-1236(71)90015-2.  Google Scholar

[7]

P. GérardP. Germain and L. Thomann, On the cubic lowest Landau level equation, Arch. Rat. Mech. Appl., 231 (2019), 1073-1128.  doi: 10.1007/s00205-018-1295-4.  Google Scholar

[8]

P. Gérard and S. Grellier, The cubic Szegő equation, Ann. Scient. Éc. Norm. Sup., 43 (2010), 761-810.  doi: 10.24033/asens.2133.  Google Scholar

[9]

P. Gérard and S. Grellier, Invariant tori for the cubic Szegő equation, Invent. Math., 187 (2012), 707-754.  doi: 10.1007/s00222-011-0342-7.  Google Scholar

[10]

P. Gérard and E. Lenzmann, A Lax pair structure for the half-wave maps equation, Lett. Math. Phys., 108 (2018), 1635-1648.  doi: 10.1007/s11005-017-1044-x.  Google Scholar

[11]

P. GermainZ. Hani and L. Thomann, On the continuous resonant equation for NLS: I. Deterministic analysis, J. Math. Pur. App., 105 (2016), 131-163.  doi: 10.1016/j.matpur.2015.10.002.  Google Scholar

[12]

M. GrillakisJ. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry. Ⅱ, J. Funct. Anal., 94 (1990), 308-348.  doi: 10.1016/0022-1236(90)90016-E.  Google Scholar

[13]

E. Lenzmann and A. Schikorra, On energy-critical half-wave maps to $\mathcal{S}^2$, Invent. Math., 213 (2018), 1-82.  doi: 10.1007/s00222-018-0785-1.  Google Scholar

[14] D. E. Pelinovsky, Localization in Periodic Potentials: From Schrödinger Operators to the Gross-Pitaevskii Equation, LMS Lecture Note Series, 390, Cambridge University Press, Cambridge, 2011.  doi: 10.1017/CBO9780511997754.  Google Scholar
[15]

O. Pocovnicu, Traveling waves for the cubic Szegő equation on the real line, Anal. PDE, 4 (2011), 379-404.  doi: 10.2140/apde.2011.4.379.  Google Scholar

[16]

J. Thirouin, Classification of traveling waves for a quadratic Szegő equation, Discr. Cont. Dynam. Syst., 39 (2019), 3099-3122.  doi: 10.3934/dcds.2019128.  Google Scholar

Figure 1.  The smallest eigenvalues of $ L_+ $ (left) and $ L_- $ (right) for the stationary state (1.4) for the upper sign normalized by $ \lambda = 1 $
Figure 2.  The smallest eigenvalues of $ L_+ $ (left) and $ L_- $ (right) for the stationary state (1.4) for the lower sign normalized by $ \lambda-\omega = 1 $
Figure 3.  The smallest eigenvalues of $ L_+ $ (left) and $ L_- $ (right) for the branch bifurcating from the second eigenmode at $ \omega_6 = 3/35 $ with normalization $ \lambda-\omega = 1 $
[1]

Yan'e Wang, Jianhua Wu. Stability of positive constant steady states and their bifurcation in a biological depletion model. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 849-865. doi: 10.3934/dcdsb.2011.15.849

[2]

Martin Gugat, Falk M. Hante, Markus Hirsch-Dick, Günter Leugering. Stationary states in gas networks. Networks & Heterogeneous Media, 2015, 10 (2) : 295-320. doi: 10.3934/nhm.2015.10.295

[3]

Micol Amar, Andrea Braides. A characterization of variational convergence for segmentation problems. Discrete & Continuous Dynamical Systems - A, 1995, 1 (3) : 347-369. doi: 10.3934/dcds.1995.1.347

[4]

Kousuke Kuto. Stability and Hopf bifurcation of coexistence steady-states to an SKT model in spatially heterogeneous environment. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 489-509. doi: 10.3934/dcds.2009.24.489

[5]

Jaime Angulo Pava, Nataliia Goloshchapova. On the orbital instability of excited states for the NLS equation with the δ-interaction on a star graph. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5039-5066. doi: 10.3934/dcds.2018221

[6]

Sabri Bensid, Jesús Ildefonso Díaz. Stability results for discontinuous nonlinear elliptic and parabolic problems with a S-shaped bifurcation branch of stationary solutions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1757-1778. doi: 10.3934/dcdsb.2017105

[7]

Tai-Ping Liu, Zhouping Xin, Tong Yang. Vacuum states for compressible flow. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 1-32. doi: 10.3934/dcds.1998.4.1

[8]

Yonggeun Cho, Hichem Hajaiej, Gyeongha Hwang, Tohru Ozawa. On the orbital stability of fractional Schrödinger equations. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1267-1282. doi: 10.3934/cpaa.2014.13.1267

[9]

Fábio Natali, Ademir Pastor. Orbital stability of periodic waves for the Klein-Gordon-Schrödinger system. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 221-238. doi: 10.3934/dcds.2011.31.221

[10]

Sevdzhan Hakkaev. Orbital stability of solitary waves of the Schrödinger-Boussinesq equation. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1043-1050. doi: 10.3934/cpaa.2007.6.1043

[11]

Jianqing Chen. Sharp variational characterization and a Schrödinger equation with Hartree type nonlinearity. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1613-1628. doi: 10.3934/dcdss.2016066

[12]

Paul H. Rabinowitz. A new variational characterization of spatially heteroclinic solutions of a semilinear elliptic PDE. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 507-515. doi: 10.3934/dcds.2004.10.507

[13]

Guillaume Bal, Alexandre Jollivet. Stability estimates in stationary inverse transport. Inverse Problems & Imaging, 2008, 2 (4) : 427-454. doi: 10.3934/ipi.2008.2.427

[14]

Stefano Fasani, Sergio Rinaldi. Local stabilization and network synchronization: The case of stationary regimes. Mathematical Biosciences & Engineering, 2010, 7 (3) : 623-639. doi: 10.3934/mbe.2010.7.623

[15]

Bogdan-Vasile Matioc. A characterization of the symmetric steady water waves in terms of the underlying flow. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3125-3133. doi: 10.3934/dcds.2014.34.3125

[16]

Kousuke Kuto, Tohru Tsujikawa. Bifurcation structure of steady-states for bistable equations with nonlocal constraint. Conference Publications, 2013, 2013 (special) : 467-476. doi: 10.3934/proc.2013.2013.467

[17]

Yoshifumi Aimoto, Takayasu Matsuo, Yuto Miyatake. A local discontinuous Galerkin method based on variational structure. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 817-832. doi: 10.3934/dcdss.2015.8.817

[18]

Naoto Miyoshi. On the stationary LCFS-PR single-server queue: A characterization via stochastic intensity. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 713-725. doi: 10.3934/naco.2011.1.713

[19]

Yukio Kan-On. Global bifurcation structure of stationary solutions for a Lotka-Volterra competition model. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 147-162. doi: 10.3934/dcds.2002.8.147

[20]

Xiaoling Zou, Dejun Fan, Ke Wang. Stationary distribution and stochastic Hopf bifurcation for a predator-prey system with noises. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1507-1519. doi: 10.3934/dcdsb.2013.18.1507

2018 Impact Factor: 1.143

Article outline

Figures and Tables

[Back to Top]