We examine regularity of the extremal solution of nonlinear nonlocal eigenvalue problem
$ \begin{eqnarray*} \left\{ \begin{array}{lcl} \hfill \mathcal L u & = & \lambda F(u,v) \qquad \text{in} \ \ \Omega, \\ \hfill \mathcal L v & = & \gamma G(u,v) \qquad \text{in} \ \ \Omega, \\ \hfill u,v & = &0 \qquad \qquad \text{on} \ \ \mathbb R^{n} \backslash \Omega , \end{array}\right. \end{eqnarray*} $
with an integro-differential operator, including the fractional Laplacian, of the form
$ \begin{equation*} \label{} \mathcal L(u (x)) = \lim\limits_{\epsilon\to 0} \int_{\mathbb R^n\setminus B_\epsilon(x) } [u(x) - u(z)] J(z-x) dz , \end{equation*} $
when $ J $ is a nonnegative measurable even jump kernel. In particular, we consider jump kernels of the form of $ J(y) = \frac{a(y/|y|)}{|y|^{n+2s}} $ where $ s\in (0,1) $ and $ a $ is any nonnegative even measurable function in $ L^1(\mathbb {S}^{n-1}) $ that satisfies ellipticity assumptions. We first establish stability inequalities for minimal solutions of the above system for a general nonlinearity and a general kernel. Then, we prove regularity of the extremal solution in dimensions $ n < 10s $ and $ n<2s+\frac{4s}{p\mp 1}[p+\sqrt{p(p\mp1)}] $ for the Gelfand and Lane-Emden systems when $ p>1 $ (with positive and negative exponents), respectively. When $ s\to 1 $, these dimensions are optimal. However, for the case of $ s\in(0,1) $ getting the optimal dimension remains as an open problem. Moreover, for general nonlinearities, we consider gradient systems and we establish regularity of the extremal solution in dimensions $ n<4s $. As far as we know, this is the first regularity result on the extremal solution of nonlocal system of equations.
Citation: |
[1] |
R. Bass, Diffusions and Elliptic Operators, Probability and its Applications, Springer-Verlag, New York, 1998.
![]() ![]() |
[2] |
J. Bertoin, Lévy Processes, Cambridge University Press, Cambridge, 1996.
![]() ![]() |
[3] |
H. Brezis, T. Cazenave, Y. Martel and A. Ramiandrisoa, Blow up for $u_t - \Delta u = g(u)$ revisited, Advances in Differential Equations, 1 (1996), 73-90.
![]() ![]() |
[4] |
H. Brezis and L. Vazquez, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut. Madrid, 10 (1997), 443-469.
![]() ![]() |
[5] |
X. Cabré, Regularity of minimizers of semilinear elliptic problems up to dimension four, Comm. Pure Appl. Math., 63 (2010), 1362-1380.
doi: 10.1002/cpa.20327.![]() ![]() ![]() |
[6] |
X. Cabré and A. Capella, Regularity of radial minimizers and extremal solutions of semilinear elliptic equations, Journal of Functional Analysis, 238 (2006), 709-733.
doi: 10.1016/j.jfa.2005.12.018.![]() ![]() ![]() |
[7] |
X. Cabré, A. Figalli, X. Ros-Oton and J. Serra, Stable solutions to semilinear elliptic equations are smooth up to dimension 9, Preprint, arXiv: 1907.09403 (2019).
![]() |
[8] |
X. Cabré and X. Ros-Oton, Regularity of stable solutions up to dimension 7 in domains of double revolution, Comm. Partial Differential Equations, 38 (2013), 135-154.
doi: 10.1080/03605302.2012.697505.![]() ![]() ![]() |
[9] |
X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians, Ⅰ: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 23-53.
doi: 10.1016/j.anihpc.2013.02.001.![]() ![]() ![]() |
[10] |
L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Diff. Equ., 32 (2007), 1245-1260.
doi: 10.1080/03605300600987306.![]() ![]() ![]() |
[11] |
A. Capella, J. Davila, L. Dupaigne and Y. Sire, Regularity of radial extremal solutions for some non local semilinear equations, Comm. Partial Diff. Equ., 36 (2011), 1353-1384.
doi: 10.1080/03605302.2011.562954.![]() ![]() ![]() |
[12] |
W. Chen, C. Li and B. Ou, Classification of solutions to an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.
doi: 10.1002/cpa.20116.![]() ![]() ![]() |
[13] |
C. Cowan, Regularity of the extremal solutions in a Gelfand system problem, Advanced Nonlinear Studies, 11 (2011), 695-700.
doi: 10.1515/ans-2011-0310.![]() ![]() ![]() |
[14] |
C. Cowan and M. Fazly, Regularity of the extremal solutions associated to elliptic systems, Journal of Differential Equations, 257 (2014), 4087-4107.
doi: 10.1016/j.jde.2014.08.002.![]() ![]() ![]() |
[15] |
M. G. Crandall and P. H. Rabinowitz, Some continuation and variation methods for positive solutions of nonlinear elliptic eigenvalue problems, Arch. Rat. Mech. Anal., 58 (1975), 207-218.
doi: 10.1007/BF00280741.![]() ![]() ![]() |
[16] |
J. Davila, L. Dupaigne and J. Wei, On the fractional Lane-Emden equation, Trans. Amer. Math. Soc., 369 (2017), 6087-6104.
doi: 10.1090/tran/6872.![]() ![]() ![]() |
[17] |
L. Dupaigne, A. Farina and B. Sirakov, Regularity of the extremal solutions for the Liouville system, Geometric Partial Differential Equations, CRM Series, Ed. Norm., Pisa., 15 (2013), 139–144.
doi: 10.1007/978-88-7642-473-1_7.![]() ![]() ![]() |
[18] |
P. Esposito, N. Ghoussoub and Y. Guo, Compactness along the branch of semi-stable and unstable solutions for an elliptic problem with a singular nonlinearity, Comm. Pure Appl. Math., 60 (2007), 1731-1768.
doi: 10.1002/cpa.20189.![]() ![]() ![]() |
[19] |
P. Esposito, N. Ghoussoub and Y. Guo, Mathematical Analysis of Partial Differential Equations Modeling Electrostatic MEMS, Research Monograph, Courant Lecture Notes, 2010.
doi: 10.1090/cln/020.![]() ![]() ![]() |
[20] |
A. Farina, On the classification of solutions of the Lane-Emden equation on unbounded domains of $\mathbb R^n$, J. Math. Pures Appl., 87 (2007), 537-561.
doi: 10.1016/j.matpur.2007.03.001.![]() ![]() ![]() |
[21] |
A. Farina, Stable solutions of $-\Delta u = e^u$ on $\mathbb R^n$, C. R. Math. Acad. Sci. Paris, 345 (2007), 63-66.
doi: 10.1016/j.crma.2007.05.021.![]() ![]() ![]() |
[22] |
M. Fazly, Rigidity results for stable solutions of symmetric systems, Proceedings of the American Mathematical Society, 143 (2015), 5307-5321.
doi: 10.1090/proc/12647.![]() ![]() ![]() |
[23] |
M. Fazly and N. Ghoussoub, De Giorgi type results for elliptic systems, Calc. Var. Partial Differential Equations, 47 (2013), 809-823.
doi: 10.1007/s00526-012-0536-x.![]() ![]() ![]() |
[24] |
M. Fazly and J. Wei, On finite Morse index solutions of higher order fractional Lane-Emden equations, American Journal of Mathematics, 139 (2017), 433-460.
doi: 10.1353/ajm.2017.0011.![]() ![]() ![]() |
[25] |
X. Fernández-Real and X. Ros-Oton, Boundary regularity for the fractional heat equation, Rev. Real Acad. Cienc. Ser. A Math, 110 (2016), 49-64.
doi: 10.1007/s13398-015-0218-6.![]() ![]() ![]() |
[26] |
N. Ghoussoub and Y. Guo, On the partial differential equations of electro MEMS devices: stationary case, SIAM J. Math. Anal., 38 (2007), 1423-1449.
doi: 10.1137/050647803.![]() ![]() ![]() |
[27] |
P. Glowacki and W. Hebisch, Pointwise estimates for densities of stable semigroups of measures, Studia Math., 104 (1992), 243-258.
doi: 10.4064/sm-104-3-243-258.![]() ![]() ![]() |
[28] |
D. D. Joseph and T. S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal., 49 (1973), 241-269.
doi: 10.1007/BF00250508.![]() ![]() ![]() |
[29] |
Ph. Laurencot and C. Walker, Some singular equations modeling MEMS, Bulletin of the American Mathematical Society, 54 (2017), 437–479.
doi: 10.1090/bull/1563.![]() ![]() ![]() |
[30] |
Y. Y. Li, Remark on some conformally invariant integral equations: The method of moving spheres, J. Eur. Math. Soc. (JEMS), 6 (2004), 153-180.
![]() ![]() |
[31] |
J. Liouville, Sur l'équation aux différences partielles $\frac{d^2\log \lambda}{du dv}\pm \frac{\lambda}{2a^2}$ = 0, J. Math. Pures Appl., 18 (1853), 71-72.
![]() |
[32] |
F. Mignot and J. P. Puel, Solution radiale singuliére $-\Delta u = e^u$, C. R. Acad. Sci. Paris, 307 (1988), 379-382.
![]() ![]() |
[33] |
M. Montenegro, Minimal solutions for a class of elliptic systems, Bull. London Math. Soc., 37 (2005), 405-416.
doi: 10.1112/S0024609305004248.![]() ![]() ![]() |
[34] |
K. Nagasaki and T. Suzuki, Spectral and related properties about the Emden-Fowler equation $-\Delta u = \lambda e^u$ on circular domains, Mathematische Annalen, 299 (1994), 1-15.
doi: 10.1007/BF01459770.![]() ![]() ![]() |
[35] |
G. Nedev, Regularity of the extremal solution of semilinear elliptic equations, C. R. Acad. Sci. Paris. I Math., 330 (2000), 997-1002.
doi: 10.1016/S0764-4442(00)00289-5.![]() ![]() ![]() |
[36] |
X. Ros-Oton and J. Serra, The extremal solution for the fractional Laplacian, Calc. Var. Partial Differential Equations, 50 (2014), 723-750.
doi: 10.1007/s00526-013-0653-1.![]() ![]() ![]() |
[37] |
X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J. Math. Pures Appl., 101 (2014), 275-302.
doi: 10.1016/j.matpur.2013.06.003.![]() ![]() ![]() |
[38] |
X. Ros-Oton and J. Serra, Regularity theory for general stable operators, Journal Differential Equations, 260 (2016), 8675-8715.
doi: 10.1016/j.jde.2016.02.033.![]() ![]() ![]() |
[39] |
X. Ros-Oton, Regularity for the fractional Gelfand problem up to dimension 7, J. Math. Anal. Appl., 419 (2014), 10-19.
doi: 10.1016/j.jmaa.2014.04.048.![]() ![]() ![]() |
[40] |
T. Sanz-Perela, Regularity of radial stable solutions to semilinear elliptic equations for the fractional Laplacian, Commun. Pure Appl. Anal., 17 (2018), 2547-2575.
doi: 10.3934/cpaa.2018121.![]() ![]() ![]() |
[41] |
L. Silvestre, Hölder estimates for solutions of integro-differential equations like the fractional Laplace, Indiana University Mathematics Journal, 55 (2006), 1155-1174.
doi: 10.1512/iumj.2006.55.2706.![]() ![]() ![]() |
[42] |
E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, vol. 30. Princeton University Press, Princeton, 1970.
![]() ![]() |
[43] |
S. Villegas, Boundedness of extremal solutions in dimension 4, Advances Math., 235 (2013), 126-133.
doi: 10.1016/j.aim.2012.11.015.![]() ![]() ![]() |