This paper deals with the derivation of entropy solutions to Cauchy problems for a class of scalar conservation laws with space-density depending fluxes from systems of deterministic particles of follow-the-leader type. We consider fluxes which are product of a function of the density $ v(\rho) $ and a function of the space variable $ \phi(x) $. We cover four distinct cases in terms of the sign of $ \phi $, including cases in which the latter is not constant. The convergence result relies on a local maximum principle and on a uniform $ BV $ estimate for the approximating density.
Citation: |
[1] |
L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Mathematical Monographs, Oxford University Press, 2000.
![]() ![]() |
[2] |
A. Aw, A. Klar, T. Materne and M. Rascle, Derivation of continuum traffic flow models from microscopic follow-the-leader models, SIAM Journal on Applied Mathematics, 63 (2002), 259-278.
doi: 10.1137/S0036139900380955.![]() ![]() ![]() |
[3] |
A. Aw and M. Rascle, Resurrection of 'second order' models of traffic flow, SIAM Journal on Applied Mathematics, 60 (2000), 916–938.
doi: 10.1137/S0036139997332099.![]() ![]() ![]() |
[4] |
F. Berthelin, P. Degond, M. Delitala and M. Rascle, A model for the formation and evolution of traffic jams, Archive for Rational Mechanics and Analysis, 187 (2008), 185–220.
doi: 10.1007/s00205-007-0061-9.![]() ![]() ![]() |
[5] |
F. Berthelin and P. Goatin, Particle approximation of a constrained model for traffic flow, Nonlinear Differential Equations and Applications NoDEA, 24 (2017), Art. 55, 16 pp.
doi: 10.1007/s00030-017-0480-8.![]() ![]() ![]() |
[6] |
F. Betancourt, R. Bürger, K. H. Karlsen and E. M. Tory, On nonlocal conservation laws modelling sedimentation, Nonlinearity, 24 (2011), 855–885.
doi: 10.1088/0951-7715/24/3/008.![]() ![]() ![]() |
[7] |
J. A. Carrillo, Y.-P. Choi and M. Hauray, The derivation of swarming models: Mean-field limit and Wasserstein distances, Collective Dynamics from Bacteria to Crowds. CISM International Centre for Mechanical Sciences, 553 (2014), 1–46.
doi: 10.1007/978-3-7091-1785-9_1.![]() ![]() ![]() |
[8] |
J. A. Carrillo, M. Di Francesco and G. Toscani, Condensation phenomena in nonlinear drift equations, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, 15 (2016), 145–171.
![]() ![]() |
[9] |
C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, vol. 325 of Grundlehrender Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 2010.
doi: 10.1007/978-3-642-04048-1.![]() ![]() ![]() |
[10] |
M. Di Francesco, S. Fagioli and E. Radici, Deterministic particle approximation for nonlocal transport equations with nonlinear mobility, Journal of Differential Equations, 266 (2019), 2830–2868.
doi: 10.1016/j.jde.2018.08.047.![]() ![]() ![]() |
[11] |
M. Di Francesco, S. Fagioli and M. D. Rosini, Many particle approximation for the Aw-Rascle-Zhang second order model for vehicular traffic, Mathematical Biosciences and Engineering, 14 (2017), 127-141.
doi: 10.3934/mbe.2017009.![]() ![]() ![]() |
[12] |
M. Di Francesco, S. Fagioli and M. D. Rosini, Deterministic particle approximation of scalar conservation laws, Bollettino dell'Unione Matematica Italiana, 10 (2017), 487–501.
doi: 10.1007/s40574-017-0132-2.![]() ![]() ![]() |
[13] |
M. Di Francesco, S. Fagioli, M. D. Rosini and G. Russo, Deterministic particle approximation of the Hughes model in one space dimension, Kinetic and Related Models, 10 (2017), 215–237.
doi: 10.3934/krm.2017009.![]() ![]() ![]() |
[14] |
M. Di Francesco, S. Fagioli, M. D. Rosini and G. Russo, Follow-the-leader approximations of macroscopic models for vehicular and pedestrian flows, Active Particles, 1 (2017), 333–378.
![]() ![]() |
[15] |
M. Di Francesco and M. D. Rosini, Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit, Archive for Rational Mechanics and Analysis, 217 (2015), 831–871.
doi: 10.1007/s00205-015-0843-4.![]() ![]() ![]() |
[16] |
S. Fagioli and E. Radici, Solutions to aggregation–diffusion equations with nonlinear mobility constructed via a deterministic particle approximation, Mathematical Models and Methods in Applied Sciences, 28 (2018), 1801–1829.
doi: 10.1142/S0218202518400067.![]() ![]() ![]() |
[17] |
P. A. Ferrari, Shock fluctuations in asymmetric simple exclusion, Probabilty Theory and Related Fields, 91 (1992), 81–101.
doi: 10.1007/BF01194491.![]() ![]() ![]() |
[18] |
P. L. Ferrari and P. Nejjar, Shock fluctuations in flat TASEP under critical scaling, Journal of Statistical Physics, 160 (2015), 985–1004.
doi: 10.1007/s10955-015-1208-y.![]() ![]() ![]() |
[19] |
L. Gosse and G. Toscani, Identification of asymptotic decay to self-similarity for one-dimensional filtration equations, SIAM Journal on Numerical Analysis, 43 (2006), 2590–2606.
doi: 10.1137/040608672.![]() ![]() ![]() |
[20] |
M. Z. Guo, G. C. Papanicolaou and S. R. S. Varadhan, Nonlinear diffusion limit for a system with nearest neighbor interactions, Communications in Mathematical Physics, 118 (1988), 31–59.
doi: 10.1007/BF01218476.![]() ![]() ![]() |
[21] |
H. Holden and N. H. Risebro, The continuum limit of follow-the-leader models. a short proof, Discrete & Continuous Dynamical Systems-A, 38 (2018), 715–722.
doi: 10.3934/dcds.2018031.![]() ![]() ![]() |
[22] |
H. Holden and N. H. Risebro, Follow-the-leader models can be viewed as a numerical approximation to the Lighthill-Whitham-Richards model for traffic flow, Networks & Heterogeneous Media, 13 (2018), 409–421.
doi: 10.3934/nhm.2018018.![]() ![]() ![]() |
[23] |
L. Hörmander, Lectures on Nonlinear Hyperbolic Differential Equations, vol. 26 of Mathématiques et Applications, Springer, 1997.
![]() ![]() |
[24] |
K. H. Karlsen and K.-A. Lie, An unconditionally stable splitting scheme for a class of nonlinear parabolic equations, IMA Journal of Numerical Analysis, 19 (1999), 609–635.
doi: 10.1093/imanum/19.4.609.![]() ![]() ![]() |
[25] |
K. H. Karlsen and N. H. Risebro, On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients, Discrete and Continuous Dynamical Systems, 9 (2003), 1081–1104.
doi: 10.3934/dcds.2003.9.1081.![]() ![]() ![]() |
[26] |
S. Kružkov, First order quasilinear equations in several independent variables, Mathematics of the USSR-Sbornik, 10 (1970), 217–243.
![]() |
[27] |
T. M. Liggett, Interacting Particle Systems, vol. 276 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, New York, 1985.
doi: 10.1007/978-1-4613-8542-4.![]() ![]() ![]() |
[28] |
M. Lighthill and G. Whitham, On kinematic waves. Ⅱ. A theory of traffic flow on long crowded roads, Proceedings of the Royal Society. London. Series A. Mathematical, Physical and Engineering Sciences, 229 (1955), 317–345.
doi: 10.1098/rspa.1955.0089.![]() ![]() ![]() |
[29] |
D. Matthes and H. Osberger, Convergence of a variational Lagrangian scheme for a nonlinear drift diffusion equation, ESAIM: Mathematical Modelling and Numerical Analysis, 48 (2014), 697-726.
doi: 10.1051/m2an/2013126.![]() ![]() ![]() |
[30] |
P. Richards, Shock waves on the highway, Operations Research, 4 (1956), 42–51.
doi: 10.1287/opre.4.1.42.![]() ![]() ![]() |
[31] |
M. Rosini, Macroscopic Models for Vehicular Flows and Crowd Dynamics: Theory and Applications, Understanding Complex Systems, Springer, Heidelberg, 2013.
doi: 10.1007/978-3-319-00155-5.![]() ![]() ![]() |
[32] |
R. Rossi and G. Savaré, Tightness, integral equicontinuity and compactness for evolution problems in Banach spaces, Annali della Scuola Normale Superiore di Pisa. Classe di Scienze, 2 (2003), 395–431.
![]() ![]() |
[33] |
G. Russo, Deterministic diffusion of particles, Communications on Pure and Applied Mathematics, 43 (1990), 697–733.
doi: 10.1002/cpa.3160430602.![]() ![]() ![]() |
[34] |
D. W. Stroock and S. R. S. Varadhan, Multidimensional Diffusion Processes, vol. 233 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin-New York, 1979.
![]() ![]() |
[35] |
G. Toscani, Finite time blow up in Kaniadakis-Quarati model of Bose-Einstein particles, Communications in Partial Differential Equations, 37 (2012), 77–87.
doi: 10.1080/03605302.2011.592236.![]() ![]() ![]() |
[36] |
C. Villani, Optimal Transport. Old and New, vol. 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 2009.
doi: 10.1007/978-3-540-71050-9.![]() ![]() ![]() |