This paper deals with the derivation of entropy solutions to Cauchy problems for a class of scalar conservation laws with space-density depending fluxes from systems of deterministic particles of follow-the-leader type. We consider fluxes which are product of a function of the density $ v(\rho) $ and a function of the space variable $ \phi(x) $. We cover four distinct cases in terms of the sign of $ \phi $, including cases in which the latter is not constant. The convergence result relies on a local maximum principle and on a uniform $ BV $ estimate for the approximating density.
Citation: |
[1] | L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Mathematical Monographs, Oxford University Press, 2000. |
[2] | A. Aw, A. Klar, T. Materne and M. Rascle, Derivation of continuum traffic flow models from microscopic follow-the-leader models, SIAM Journal on Applied Mathematics, 63 (2002), 259-278. doi: 10.1137/S0036139900380955. |
[3] | A. Aw and M. Rascle, Resurrection of 'second order' models of traffic flow, SIAM Journal on Applied Mathematics, 60 (2000), 916–938. doi: 10.1137/S0036139997332099. |
[4] | F. Berthelin, P. Degond, M. Delitala and M. Rascle, A model for the formation and evolution of traffic jams, Archive for Rational Mechanics and Analysis, 187 (2008), 185–220. doi: 10.1007/s00205-007-0061-9. |
[5] | F. Berthelin and P. Goatin, Particle approximation of a constrained model for traffic flow, Nonlinear Differential Equations and Applications NoDEA, 24 (2017), Art. 55, 16 pp. doi: 10.1007/s00030-017-0480-8. |
[6] | F. Betancourt, R. Bürger, K. H. Karlsen and E. M. Tory, On nonlocal conservation laws modelling sedimentation, Nonlinearity, 24 (2011), 855–885. doi: 10.1088/0951-7715/24/3/008. |
[7] | J. A. Carrillo, Y.-P. Choi and M. Hauray, The derivation of swarming models: Mean-field limit and Wasserstein distances, Collective Dynamics from Bacteria to Crowds. CISM International Centre for Mechanical Sciences, 553 (2014), 1–46. doi: 10.1007/978-3-7091-1785-9_1. |
[8] | J. A. Carrillo, M. Di Francesco and G. Toscani, Condensation phenomena in nonlinear drift equations, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, 15 (2016), 145–171. |
[9] | C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, vol. 325 of Grundlehrender Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-04048-1. |
[10] | M. Di Francesco, S. Fagioli and E. Radici, Deterministic particle approximation for nonlocal transport equations with nonlinear mobility, Journal of Differential Equations, 266 (2019), 2830–2868. doi: 10.1016/j.jde.2018.08.047. |
[11] | M. Di Francesco, S. Fagioli and M. D. Rosini, Many particle approximation for the Aw-Rascle-Zhang second order model for vehicular traffic, Mathematical Biosciences and Engineering, 14 (2017), 127-141. doi: 10.3934/mbe.2017009. |
[12] | M. Di Francesco, S. Fagioli and M. D. Rosini, Deterministic particle approximation of scalar conservation laws, Bollettino dell'Unione Matematica Italiana, 10 (2017), 487–501. doi: 10.1007/s40574-017-0132-2. |
[13] | M. Di Francesco, S. Fagioli, M. D. Rosini and G. Russo, Deterministic particle approximation of the Hughes model in one space dimension, Kinetic and Related Models, 10 (2017), 215–237. doi: 10.3934/krm.2017009. |
[14] | M. Di Francesco, S. Fagioli, M. D. Rosini and G. Russo, Follow-the-leader approximations of macroscopic models for vehicular and pedestrian flows, Active Particles, 1 (2017), 333–378. |
[15] | M. Di Francesco and M. D. Rosini, Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit, Archive for Rational Mechanics and Analysis, 217 (2015), 831–871. doi: 10.1007/s00205-015-0843-4. |
[16] | S. Fagioli and E. Radici, Solutions to aggregation–diffusion equations with nonlinear mobility constructed via a deterministic particle approximation, Mathematical Models and Methods in Applied Sciences, 28 (2018), 1801–1829. doi: 10.1142/S0218202518400067. |
[17] | P. A. Ferrari, Shock fluctuations in asymmetric simple exclusion, Probabilty Theory and Related Fields, 91 (1992), 81–101. doi: 10.1007/BF01194491. |
[18] | P. L. Ferrari and P. Nejjar, Shock fluctuations in flat TASEP under critical scaling, Journal of Statistical Physics, 160 (2015), 985–1004. doi: 10.1007/s10955-015-1208-y. |
[19] | L. Gosse and G. Toscani, Identification of asymptotic decay to self-similarity for one-dimensional filtration equations, SIAM Journal on Numerical Analysis, 43 (2006), 2590–2606. doi: 10.1137/040608672. |
[20] | M. Z. Guo, G. C. Papanicolaou and S. R. S. Varadhan, Nonlinear diffusion limit for a system with nearest neighbor interactions, Communications in Mathematical Physics, 118 (1988), 31–59. doi: 10.1007/BF01218476. |
[21] | H. Holden and N. H. Risebro, The continuum limit of follow-the-leader models. a short proof, Discrete & Continuous Dynamical Systems-A, 38 (2018), 715–722. doi: 10.3934/dcds.2018031. |
[22] | H. Holden and N. H. Risebro, Follow-the-leader models can be viewed as a numerical approximation to the Lighthill-Whitham-Richards model for traffic flow, Networks & Heterogeneous Media, 13 (2018), 409–421. doi: 10.3934/nhm.2018018. |
[23] | L. Hörmander, Lectures on Nonlinear Hyperbolic Differential Equations, vol. 26 of Mathématiques et Applications, Springer, 1997. |
[24] | K. H. Karlsen and K.-A. Lie, An unconditionally stable splitting scheme for a class of nonlinear parabolic equations, IMA Journal of Numerical Analysis, 19 (1999), 609–635. doi: 10.1093/imanum/19.4.609. |
[25] | K. H. Karlsen and N. H. Risebro, On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients, Discrete and Continuous Dynamical Systems, 9 (2003), 1081–1104. doi: 10.3934/dcds.2003.9.1081. |
[26] | S. Kružkov, First order quasilinear equations in several independent variables, Mathematics of the USSR-Sbornik, 10 (1970), 217–243. |
[27] | T. M. Liggett, Interacting Particle Systems, vol. 276 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, New York, 1985. doi: 10.1007/978-1-4613-8542-4. |
[28] | M. Lighthill and G. Whitham, On kinematic waves. Ⅱ. A theory of traffic flow on long crowded roads, Proceedings of the Royal Society. London. Series A. Mathematical, Physical and Engineering Sciences, 229 (1955), 317–345. doi: 10.1098/rspa.1955.0089. |
[29] | D. Matthes and H. Osberger, Convergence of a variational Lagrangian scheme for a nonlinear drift diffusion equation, ESAIM: Mathematical Modelling and Numerical Analysis, 48 (2014), 697-726. doi: 10.1051/m2an/2013126. |
[30] | P. Richards, Shock waves on the highway, Operations Research, 4 (1956), 42–51. doi: 10.1287/opre.4.1.42. |
[31] | M. Rosini, Macroscopic Models for Vehicular Flows and Crowd Dynamics: Theory and Applications, Understanding Complex Systems, Springer, Heidelberg, 2013. doi: 10.1007/978-3-319-00155-5. |
[32] | R. Rossi and G. Savaré, Tightness, integral equicontinuity and compactness for evolution problems in Banach spaces, Annali della Scuola Normale Superiore di Pisa. Classe di Scienze, 2 (2003), 395–431. |
[33] | G. Russo, Deterministic diffusion of particles, Communications on Pure and Applied Mathematics, 43 (1990), 697–733. doi: 10.1002/cpa.3160430602. |
[34] | D. W. Stroock and S. R. S. Varadhan, Multidimensional Diffusion Processes, vol. 233 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin-New York, 1979. |
[35] | G. Toscani, Finite time blow up in Kaniadakis-Quarati model of Bose-Einstein particles, Communications in Partial Differential Equations, 37 (2012), 77–87. doi: 10.1080/03605302.2011.592236. |
[36] | C. Villani, Optimal Transport. Old and New, vol. 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 2009. doi: 10.1007/978-3-540-71050-9. |