• Previous Article
    Fermi's golden rule and $ H^1 $ scattering for nonlinear Klein-Gordon equations with metastable states
  • DCDS Home
  • This Issue
  • Next Article
    Almost sure global well posedness for the BBM equation with infinite $ L^{2} $ initial data
January  2020, 40(1): 319-329. doi: 10.3934/dcds.2020012

A shift map with a discontinuous entropy function

Department of Mathematics, The City College of New York, New York, NY, 10031, USA

* Corresponding author: Christian Wolf

Received  January 2019 Revised  July 2019 Published  October 2019

Fund Project: Christian Wolf was partially supported by a grant from the PSC-CUNY (TRADB-49-253 to Christian Wolf)

Let $ f:X\to X $ be a continuous map on a compact metric space with finite topological entropy. Further, we assume that the entropy map $ \mu\mapsto h_\mu(f) $ is upper semi-continuous. It is well-known that this implies the continuity of the localized entropy function of a given continuous potential $ \phi:X\to {\mathbb R} $. In this note we show that this result does not carry over to the case of higher-dimensional potentials $ \Phi:X\to {\mathbb R}^m $. Namely, we construct for a shift map $ f $ a $ 2 $-dimensional Lipschitz continuous potential $ \Phi $ with a discontinuous localized entropy function.

Citation: Christian Wolf. A shift map with a discontinuous entropy function. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 319-329. doi: 10.3934/dcds.2020012
References:
[1]

L. BarreiraY. Pesin and J. Schmeling, On a general concept of multifractality: Multifractal spectra for dimensions, entropies, and Lyapunov exponents. Multifractal rigidity, Chaos, 7 (1997), 27-38.  doi: 10.1063/1.166232.  Google Scholar

[2]

L. BarreiraB. Saussol and J. Schmeling, Higher-dimensional multifractal analysis, Journal de Mathématiques Pures et Appliquées, 81 (2002), 67-91.  doi: 10.1016/S0021-7824(01)01228-4.  Google Scholar

[3]

A. Blokh, Functional rotation numbers for one dimensional maps, Transactions of the American Mathematical Society, 347 (1995), 499-513.  doi: 10.1090/S0002-9947-1995-1270659-0.  Google Scholar

[4]

V. Climenhaga, Topological pressure of simultaneous level sets, Nonlinearity, 26 (2013), 241-268.  doi: 10.1088/0951-7715/26/1/241.  Google Scholar

[5]

L. DiazT. FisherM. Pacifico and J. Vieitez, Entropy-expansiveness for partially hyperbolic diffeomorphisms, Discrete Continuous Dynamical Systems, 32 (2012), 4195-4207.  doi: 10.3934/dcds.2012.32.4195.  Google Scholar

[6]

A. FanD. Feng and J. Wu, Recurrence, dimension and entropy, Journal of the London Mathematical Society, 64 (2001), 229-244.  doi: 10.1017/S0024610701002137.  Google Scholar

[7]

A. Fan, J. Schmeling and M. Wu, The multifractal spectra of V-statistics, in Further Developments in Fractals and Related Fields, Trends Math., Birkhauser/Springer, New York, 2013,135–151. doi: 10.1007/978-0-8176-8400-6_7.  Google Scholar

[8]

D. GaleV. Klee and R. T. Rockafellar, Convex functions on convex polytopes, Proceedings American Mathematical Society, 19 (1968), 867-873.  doi: 10.1090/S0002-9939-1968-0230219-6.  Google Scholar

[9]

E. Garibaldi and A. O. Lopes, Functions for relative maximization, Dynamical Systems, 22 (2007), 511-528.  doi: 10.1080/14689360701582378.  Google Scholar

[10]

W. Geller and M. Misiurewicz, Rotation and entropy, Transactions of the American Mathematical Society, 351 (1999), 2927-2948.  doi: 10.1090/S0002-9947-99-02344-2.  Google Scholar

[11]

P. GiuliettiB. KloecknerA. O. Lopes and D. Marcon, The calculus of thermodynamic formalism, Journal of the European Mathematical Society, 20 (2018), 2357-2412.  doi: 10.4171/JEMS/814.  Google Scholar

[12]

O. Jenkinson, Rotation, entropy, and equilibrium states, Transactions of the American Mathematical Society, 353 (2001), 3713-3739.  doi: 10.1090/S0002-9947-01-02706-4.  Google Scholar

[13]

T. Kucherenko and C. Wolf, Geometry and entropy of generalized rotation sets, Israel Journal of Mathematics, 199 (2014), 791-829.  doi: 10.1007/s11856-013-0053-4.  Google Scholar

[14]

T. Kucherenko and C. Wolf, Entropy and rotation sets: A toymodel approach, Communications in Contemporary Mathematics 18 (2016), 1550083, 23 pp. doi: 10.1142/S0219199715500832.  Google Scholar

[15]

T. Kucherenko and C. Wolf, Ground states and zero-temperature measures at the boundary of rotation sets, Ergodic Theory and Dynamical Systems, 39 (2019), 201-224.  doi: 10.1017/etds.2017.27.  Google Scholar

[16]

S. Newhouse, Continuity properties of entropy, Annals of Mathematics, 129 (1989), 215-235.  doi: 10.2307/1971492.  Google Scholar

[17]

K. R. Parthasarathy, On the category of ergodic measures, Illinois Journal of Mathematics, 5 (1961), 648-656.  doi: 10.1215/ijm/1255631586.  Google Scholar

[18]

R. T. Rockafellar, Convex Analysis, Princeton University Press, 1970.  Google Scholar

[19]

P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79. Springer-Verlag, New York-Berlin, 1982.  Google Scholar

[20]

K. Ziemian, Rotation sets for subshifts of finite type, Fundamenta Mathematicae, 146 (1995), 189-201.   Google Scholar

show all references

References:
[1]

L. BarreiraY. Pesin and J. Schmeling, On a general concept of multifractality: Multifractal spectra for dimensions, entropies, and Lyapunov exponents. Multifractal rigidity, Chaos, 7 (1997), 27-38.  doi: 10.1063/1.166232.  Google Scholar

[2]

L. BarreiraB. Saussol and J. Schmeling, Higher-dimensional multifractal analysis, Journal de Mathématiques Pures et Appliquées, 81 (2002), 67-91.  doi: 10.1016/S0021-7824(01)01228-4.  Google Scholar

[3]

A. Blokh, Functional rotation numbers for one dimensional maps, Transactions of the American Mathematical Society, 347 (1995), 499-513.  doi: 10.1090/S0002-9947-1995-1270659-0.  Google Scholar

[4]

V. Climenhaga, Topological pressure of simultaneous level sets, Nonlinearity, 26 (2013), 241-268.  doi: 10.1088/0951-7715/26/1/241.  Google Scholar

[5]

L. DiazT. FisherM. Pacifico and J. Vieitez, Entropy-expansiveness for partially hyperbolic diffeomorphisms, Discrete Continuous Dynamical Systems, 32 (2012), 4195-4207.  doi: 10.3934/dcds.2012.32.4195.  Google Scholar

[6]

A. FanD. Feng and J. Wu, Recurrence, dimension and entropy, Journal of the London Mathematical Society, 64 (2001), 229-244.  doi: 10.1017/S0024610701002137.  Google Scholar

[7]

A. Fan, J. Schmeling and M. Wu, The multifractal spectra of V-statistics, in Further Developments in Fractals and Related Fields, Trends Math., Birkhauser/Springer, New York, 2013,135–151. doi: 10.1007/978-0-8176-8400-6_7.  Google Scholar

[8]

D. GaleV. Klee and R. T. Rockafellar, Convex functions on convex polytopes, Proceedings American Mathematical Society, 19 (1968), 867-873.  doi: 10.1090/S0002-9939-1968-0230219-6.  Google Scholar

[9]

E. Garibaldi and A. O. Lopes, Functions for relative maximization, Dynamical Systems, 22 (2007), 511-528.  doi: 10.1080/14689360701582378.  Google Scholar

[10]

W. Geller and M. Misiurewicz, Rotation and entropy, Transactions of the American Mathematical Society, 351 (1999), 2927-2948.  doi: 10.1090/S0002-9947-99-02344-2.  Google Scholar

[11]

P. GiuliettiB. KloecknerA. O. Lopes and D. Marcon, The calculus of thermodynamic formalism, Journal of the European Mathematical Society, 20 (2018), 2357-2412.  doi: 10.4171/JEMS/814.  Google Scholar

[12]

O. Jenkinson, Rotation, entropy, and equilibrium states, Transactions of the American Mathematical Society, 353 (2001), 3713-3739.  doi: 10.1090/S0002-9947-01-02706-4.  Google Scholar

[13]

T. Kucherenko and C. Wolf, Geometry and entropy of generalized rotation sets, Israel Journal of Mathematics, 199 (2014), 791-829.  doi: 10.1007/s11856-013-0053-4.  Google Scholar

[14]

T. Kucherenko and C. Wolf, Entropy and rotation sets: A toymodel approach, Communications in Contemporary Mathematics 18 (2016), 1550083, 23 pp. doi: 10.1142/S0219199715500832.  Google Scholar

[15]

T. Kucherenko and C. Wolf, Ground states and zero-temperature measures at the boundary of rotation sets, Ergodic Theory and Dynamical Systems, 39 (2019), 201-224.  doi: 10.1017/etds.2017.27.  Google Scholar

[16]

S. Newhouse, Continuity properties of entropy, Annals of Mathematics, 129 (1989), 215-235.  doi: 10.2307/1971492.  Google Scholar

[17]

K. R. Parthasarathy, On the category of ergodic measures, Illinois Journal of Mathematics, 5 (1961), 648-656.  doi: 10.1215/ijm/1255631586.  Google Scholar

[18]

R. T. Rockafellar, Convex Analysis, Princeton University Press, 1970.  Google Scholar

[19]

P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79. Springer-Verlag, New York-Berlin, 1982.  Google Scholar

[20]

K. Ziemian, Rotation sets for subshifts of finite type, Fundamenta Mathematicae, 146 (1995), 189-201.   Google Scholar

Figure 1.  The set $ {\mathcal R} = {\mathcal R}(\Phi) $ in Example 1
[1]

Dante Carrasco-Olivera, Roger Metzger Alvan, Carlos Arnoldo Morales Rojas. Topological entropy for set-valued maps. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3461-3474. doi: 10.3934/dcdsb.2015.20.3461

[2]

Godofredo Iommi, Bartłomiej Skorulski. Multifractal analysis for the exponential family. Discrete & Continuous Dynamical Systems - A, 2006, 16 (4) : 857-869. doi: 10.3934/dcds.2006.16.857

[3]

Julien Barral, Yan-Hui Qu. On the higher-dimensional multifractal analysis. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 1977-1995. doi: 10.3934/dcds.2012.32.1977

[4]

Michael Brandenbursky, Michał Marcinkowski. Entropy and quasimorphisms. Journal of Modern Dynamics, 2019, 15: 143-163. doi: 10.3934/jmd.2019017

[5]

Wenxiang Sun, Cheng Zhang. Zero entropy versus infinite entropy. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1237-1242. doi: 10.3934/dcds.2011.30.1237

[6]

Yixiao Qiao, Xiaoyao Zhou. Zero sequence entropy and entropy dimension. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 435-448. doi: 10.3934/dcds.2017018

[7]

Mario Roy, Mariusz Urbański. Multifractal analysis for conformal graph directed Markov systems. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 627-650. doi: 10.3934/dcds.2009.25.627

[8]

Zhihui Yuan. Multifractal analysis of random weak Gibbs measures. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5367-5405. doi: 10.3934/dcds.2017234

[9]

José M. Amigó, Karsten Keller, Valentina A. Unakafova. On entropy, entropy-like quantities, and applications. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3301-3343. doi: 10.3934/dcdsb.2015.20.3301

[10]

Ping Huang, Ercai Chen, Chenwei Wang. Entropy formulae of conditional entropy in mean metrics. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5129-5144. doi: 10.3934/dcds.2018226

[11]

François Blanchard, Wen Huang. Entropy sets, weakly mixing sets and entropy capacity. Discrete & Continuous Dynamical Systems - A, 2008, 20 (2) : 275-311. doi: 10.3934/dcds.2008.20.275

[12]

Katja Polotzek, Kathrin Padberg-Gehle, Tobias Jäger. Set-oriented numerical computation of rotation sets. Journal of Computational Dynamics, 2017, 4 (1&2) : 119-141. doi: 10.3934/jcd.2017004

[13]

Boris Kruglikov, Martin Rypdal. Entropy via multiplicity. Discrete & Continuous Dynamical Systems - A, 2006, 16 (2) : 395-410. doi: 10.3934/dcds.2006.16.395

[14]

Nicolas Bedaride. Entropy of polyhedral billiard. Discrete & Continuous Dynamical Systems - A, 2007, 19 (1) : 89-102. doi: 10.3934/dcds.2007.19.89

[15]

Baolin He. Entropy of diffeomorphisms of line. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4753-4766. doi: 10.3934/dcds.2017204

[16]

Lluís Alsedà, David Juher, Deborah M. King, Francesc Mañosas. Maximizing entropy of cycles on trees. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3237-3276. doi: 10.3934/dcds.2013.33.3237

[17]

Katrin Gelfert. Lower bounds for the topological entropy. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 555-565. doi: 10.3934/dcds.2005.12.555

[18]

Benjamin Weiss. Entropy and actions of sofic groups. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3375-3383. doi: 10.3934/dcdsb.2015.20.3375

[19]

Eric A. Carlen, Maria C. Carvalho, Jonathan Le Roux, Michael Loss, Cédric Villani. Entropy and chaos in the Kac model. Kinetic & Related Models, 2010, 3 (1) : 85-122. doi: 10.3934/krm.2010.3.85

[20]

Jaume Llibre. Brief survey on the topological entropy. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3363-3374. doi: 10.3934/dcdsb.2015.20.3363

2018 Impact Factor: 1.143

Article outline

Figures and Tables

[Back to Top]