Article Contents
Article Contents

# Interpolation inequalities in $\mathrm W^{1,p}( {\mathbb S}^1)$ and carré du champ methods

• * Corresponding author: Jean Dolbeault
• This paper is devoted to an extension of rigidity results for nonlinear differential equations, based on carré du champ methods, in the one-dimensional periodic case. The main result is an interpolation inequality with non-trivial explicit estimates of the constants in $\mathrm W^{1,p}( {\mathbb S}^1)$ with $p\ge2$. Mostly for numerical reasons, we relate our estimates with issues concerning periodic dynamical systems. Our interpolation inequalities have a dual formulation in terms of generalized spectral estimates of Keller-Lieb-Thirring type, where the differential operator is now a $p$-Laplacian type operator. It is remarkable that the carré du champ method adapts to such a nonlinear framework, but significant changes have to be done and, for instance, the underlying parabolic equation has a nonlocal term whenever $p\neq2$.

Mathematics Subject Classification: Primary: 35J92, 35K92; Secondary: 49K15, 58J35.

 Citation:

• Figure 1.  The vector field $(X,Y)\mapsto(|Y|^{\frac p{p-1}-2}\,Y,|X|^{p-2}\,X-|X|^{q-2}\,X)$ and periodic trajectories corresponding to $a = 1.35$ (with positive $X$) and $a = 1.8$ (with sign-changing $X$) are shown for $p = 2.5$ and $q = 3$. The zero-energy level is also shown

Figure 2.  The period $T_a$ of the solution of (12) with initial datum $X(0) = a\in(0,1)$ and $Y(0) = 0$ as a function of $a$ for $p = 3$ and $q = 5$. We observe that $\lim_{a\to0}T_a = +\infty$ and $\lim_{a\to1}T_a = 0$

Figure 3.  Left: the branch $\lambda\mapsto\mu(\lambda)$ for $p = 3$ and $q = 5$. Right: the curve $\lambda\mapsto\lambda-\mu(\lambda)$. In both cases, the bifurcation point $\lambda = \lambda_1^\star$ is shown by a vertical line

Figure 4.  The curves $p\mapsto\lambda_1$ (dotted) and $p\mapsto\lambda_1^\star$ (plain) differ

•  [1] A. Arnold, J. A. Carrillo, L. Desvillettes, J. Dolbeault, A. Jüngel, C. Lederman, P. A. Markowich, G. Toscani and C. Villani, Entropies and equilibria of many-particle systems: An essay on recent research, Monatsh. Math., 142 (2004), 35-43.  doi: 10.1007/s00605-004-0239-2. [2] A. Arnold and J. Dolbeault, Refined convex Sobolev inequalities, J. Funct. Anal., 225 (2005), 337-351.  doi: 10.1016/j.jfa.2005.05.003. [3] D. Bakry and M. Émery, Hypercontractivité de semi-groupes de diffusion, C. R. Acad. Sci. Paris Sér. I Math., 299 (1984), 775-778. [4] D. Bakry and M. Émery, Diffusions hypercontractives, In: Séminaire de Probabilités, XIX, 1983/84, Lecture Notes in Math., 1123 (1985), 177–206. Springer, Berlin. doi: 10.1007/BFb0075847. [5] M. F. Bidaut-Véron and L. Véron, Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations, Invent. Math., 106 (1991), 489-539.  doi: 10.1007/BF01243922. [6] M. Del Pino and J. Dolbeault, The optimal Euclidean $\mathrm L^p$-Sobolev logarithmic inequality, J. Funct. Anal., 197 (2003), 151-161.  doi: 10.1016/S0022-1236(02)00070-8. [7] J. Dolbeault, M. J. Esteban, M. Kowalczyk and M. Loss, Improved interpolation inequalities on the sphere, Discrete and Continuous Dynamical Systems Series S (DCDS-S), 7 (2014), 695-724.  doi: 10.3934/dcdss.2014.7.695. [8] J. Dolbeault, M. J. Esteban and A. Laptev, Spectral estimates on the sphere, Analysis & PDE, 7 (2014), 435-460.  doi: 10.2140/apde.2014.7.435. [9] J. Dolbeault and M. Kowalczyk, Uniqueness and rigidity in nonlinear elliptic equations, interpolation inequalities, and spectral estimates, Annales de la Faculté des sciences de Toulouse Mathématiques, 26 (2017), 949–977. doi: 10.5802/afst.1557. [10] B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598.  doi: 10.1002/cpa.3160340406. [11] R. Manásevich and J. Mawhin, The spectrum of $p$-Laplacian systems with various boundary conditions and applications, Adv. Differential Equations, 5 (2000), 1289-1318. [12] A. M. Matei, First eigenvalue for the $p$-Laplace operator, Nonlinear Anal., 39 (2000), 1051-1068.  doi: 10.1016/S0362-546X(98)00266-1. [13] L. Véron, Première valeur propre non nulle du $p$-laplacien et équations quasi linéaires elliptiques sur une variété riemannienne compacte, C. R. Acad. Sci. Paris Sér. I Math., 314 (1992), 271-276. [14] C. Villani, Optimal Transport. Old and New, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 338. Springer-Verlag, Berlin, 2009. doi: 10.1007/978-3-540-71050-9.

Figures(4)