We present an example of a $ C^1 $ Anosov diffeomorphism of a two-torus with a physical measure such that its basin has full Lebesgue measure and its support is a horseshoe of zero measure.
Citation: |
[1] |
doi: 10.1007/b138174.![]() ![]() ![]() |
[2] |
R. Bowen, A horseshoe with positive measure, Invent. Math., 29 (1975), 203-204.
doi: 10.1007/BF01389849.![]() ![]() ![]() |
[3] |
R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Mathematics, 470. Springer-Verlag, Berlin, 2008.
doi: 10.1007/978-3-540-77695-6.![]() ![]() ![]() |
[4] |
Yu. Ilyashenko and A. Negut, Hölder properties of perturbed skew products and Fubini regained, Nonlinearity, 25 (2012), 2377-2399.
doi: 10.1088/0951-7715/25/8/2377.![]() ![]() ![]() |
[5] |
I. Kan, Open sets of diffeomorphisms having two attractors, each with an everywhere dense basin, Bull. Amer. Math. Soc., 31 (1994), 68-74.
doi: 10.1090/S0273-0979-1994-00507-5.![]() ![]() ![]() |
[6] |
V. Kleptsyn, D. Ryzhov and S. Minkov, Special ergodic theorems and dynamical large deviations, Nonlinearity, 25 (2012), 3189-3196.
doi: 10.1088/0951-7715/25/11/3189.![]() ![]() ![]() |
[7] |
V. Kleptsyn and P. Saltykov, On $C^2$-stable effects of intermingled basins of attractors in classes of boundary-preserving maps, Trans. Moscow Math. Soc., 72 (2011), 193-217.
doi: 10.1090/s0077-1554-2012-00196-4.![]() ![]() ![]() |
[8] |
J. Milnor, On the concept of attractor, Comm. Math. Phys., 99 (1985), 177-195.
doi: 10.1007/BF01212280.![]() ![]() ![]() |
[9] |
S. Newhouse, On codimension one Anosov diffeomorphisms, Amer. J. Math., 92 (1970), 761-770.
doi: 10.2307/2373372.![]() ![]() ![]() |
[10] |
C. Robinson and L. S. Young, Nonabsolutely continuous foliations for an Anosov diffeomorphism, Invent. Math., 61 (1980), 159-176.
doi: 10.1007/BF01390119.![]() ![]() ![]() |
[11] |
D. Ruelle, A measure associated with Axiom A attractors, Amer. J. Math., 98 (1976), 619-654.
doi: 10.2307/2373810.![]() ![]() ![]() |
[12] |
Ya. Sinai, Gibbs measures in ergodic theory, Russian Math. Surveys., 27 (1972), 21-64.
![]() ![]() |
The set
The "frame"