
-
Previous Article
Existence of positive solutions for integral systems of the weighted Hardy-Littlewood-Sobolev type
- DCDS Home
- This Issue
-
Next Article
On the radius of spatial analyticity for defocusing nonlinear Schrödinger equations
Anosov diffeomorphism with a horseshoe that attracts almost any point
1. | Institut de Mathématiques de Bourgogne, Université de Bourgogne, Dijon 21004, France |
2. | Brook Institute of Electronic Control Machines, 119334, Moscow, Vavilova str., 24, Russia |
3. | Loughborough University, LE11 3TU, Loughborough, UK |
4. | National Research University Higher School of Economics, Faculty of Mathematics, 119048, Moscow, Usacheva str., 6, Russia |
We present an example of a $ C^1 $ Anosov diffeomorphism of a two-torus with a physical measure such that its basin has full Lebesgue measure and its support is a horseshoe of zero measure.
References:
[1] |
C. Bonatti, L. J. D |
[2] |
R. Bowen,
A horseshoe with positive measure, Invent. Math., 29 (1975), 203-204.
doi: 10.1007/BF01389849. |
[3] |
R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Mathematics, 470. Springer-Verlag, Berlin, 2008.
doi: 10.1007/978-3-540-77695-6. |
[4] |
Yu. Ilyashenko and A. Negut,
Hölder properties of perturbed skew products and Fubini regained, Nonlinearity, 25 (2012), 2377-2399.
doi: 10.1088/0951-7715/25/8/2377. |
[5] |
I. Kan,
Open sets of diffeomorphisms having two attractors, each with an everywhere dense basin, Bull. Amer. Math. Soc., 31 (1994), 68-74.
doi: 10.1090/S0273-0979-1994-00507-5. |
[6] |
V. Kleptsyn, D. Ryzhov and S. Minkov,
Special ergodic theorems and dynamical large deviations, Nonlinearity, 25 (2012), 3189-3196.
doi: 10.1088/0951-7715/25/11/3189. |
[7] |
V. Kleptsyn and P. Saltykov,
On $C^2$-stable effects of intermingled basins of attractors in classes of boundary-preserving maps, Trans. Moscow Math. Soc., 72 (2011), 193-217.
doi: 10.1090/s0077-1554-2012-00196-4. |
[8] |
J. Milnor,
On the concept of attractor, Comm. Math. Phys., 99 (1985), 177-195.
doi: 10.1007/BF01212280. |
[9] |
S. Newhouse,
On codimension one Anosov diffeomorphisms, Amer. J. Math., 92 (1970), 761-770.
doi: 10.2307/2373372. |
[10] |
C. Robinson and L. S. Young,
Nonabsolutely continuous foliations for an Anosov diffeomorphism, Invent. Math., 61 (1980), 159-176.
doi: 10.1007/BF01390119. |
[11] |
D. Ruelle,
A measure associated with Axiom A attractors, Amer. J. Math., 98 (1976), 619-654.
doi: 10.2307/2373810. |
[12] |
Ya. Sinai,
Gibbs measures in ergodic theory, Russian Math. Surveys., 27 (1972), 21-64.
|
show all references
References:
[1] |
C. Bonatti, L. J. D |
[2] |
R. Bowen,
A horseshoe with positive measure, Invent. Math., 29 (1975), 203-204.
doi: 10.1007/BF01389849. |
[3] |
R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Mathematics, 470. Springer-Verlag, Berlin, 2008.
doi: 10.1007/978-3-540-77695-6. |
[4] |
Yu. Ilyashenko and A. Negut,
Hölder properties of perturbed skew products and Fubini regained, Nonlinearity, 25 (2012), 2377-2399.
doi: 10.1088/0951-7715/25/8/2377. |
[5] |
I. Kan,
Open sets of diffeomorphisms having two attractors, each with an everywhere dense basin, Bull. Amer. Math. Soc., 31 (1994), 68-74.
doi: 10.1090/S0273-0979-1994-00507-5. |
[6] |
V. Kleptsyn, D. Ryzhov and S. Minkov,
Special ergodic theorems and dynamical large deviations, Nonlinearity, 25 (2012), 3189-3196.
doi: 10.1088/0951-7715/25/11/3189. |
[7] |
V. Kleptsyn and P. Saltykov,
On $C^2$-stable effects of intermingled basins of attractors in classes of boundary-preserving maps, Trans. Moscow Math. Soc., 72 (2011), 193-217.
doi: 10.1090/s0077-1554-2012-00196-4. |
[8] |
J. Milnor,
On the concept of attractor, Comm. Math. Phys., 99 (1985), 177-195.
doi: 10.1007/BF01212280. |
[9] |
S. Newhouse,
On codimension one Anosov diffeomorphisms, Amer. J. Math., 92 (1970), 761-770.
doi: 10.2307/2373372. |
[10] |
C. Robinson and L. S. Young,
Nonabsolutely continuous foliations for an Anosov diffeomorphism, Invent. Math., 61 (1980), 159-176.
doi: 10.1007/BF01390119. |
[11] |
D. Ruelle,
A measure associated with Axiom A attractors, Amer. J. Math., 98 (1976), 619-654.
doi: 10.2307/2373810. |
[12] |
Ya. Sinai,
Gibbs measures in ergodic theory, Russian Math. Surveys., 27 (1972), 21-64.
|


[1] |
Andrey Gogolev, Misha Guysinsky. $C^1$-differentiable conjugacy of Anosov diffeomorphisms on three dimensional torus. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 183-200. doi: 10.3934/dcds.2008.22.183 |
[2] |
S. Yu. Pilyugin, Kazuhiro Sakai, O. A. Tarakanov. Transversality properties and $C^1$-open sets of diffeomorphisms with weak shadowing. Discrete and Continuous Dynamical Systems, 2006, 16 (4) : 871-882. doi: 10.3934/dcds.2006.16.871 |
[3] |
Keonhee Lee, Kazumine Moriyasu, Kazuhiro Sakai. $C^1$-stable shadowing diffeomorphisms. Discrete and Continuous Dynamical Systems, 2008, 22 (3) : 683-697. doi: 10.3934/dcds.2008.22.683 |
[4] |
João P. Almeida, Albert M. Fisher, Alberto Adrego Pinto, David A. Rand. Anosov diffeomorphisms. Conference Publications, 2013, 2013 (special) : 837-845. doi: 10.3934/proc.2013.2013.837 |
[5] |
Zemer Kosloff. On manifolds admitting stable type Ⅲ$_{\textbf1}$ Anosov diffeomorphisms. Journal of Modern Dynamics, 2018, 13: 251-270. doi: 10.3934/jmd.2018020 |
[6] |
Christian Bonatti, Sylvain Crovisier, Amie Wilkinson. $C^1$-generic conservative diffeomorphisms have trivial centralizer. Journal of Modern Dynamics, 2008, 2 (2) : 359-373. doi: 10.3934/jmd.2008.2.359 |
[7] |
Radu Saghin. Volume growth and entropy for $C^1$ partially hyperbolic diffeomorphisms. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3789-3801. doi: 10.3934/dcds.2014.34.3789 |
[8] |
Xinsheng Wang, Lin Wang, Yujun Zhu. Formula of entropy along unstable foliations for $C^1$ diffeomorphisms with dominated splitting. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 2125-2140. doi: 10.3934/dcds.2018087 |
[9] |
S. Astels. Thickness measures for Cantor sets. Electronic Research Announcements, 1999, 5: 108-111. |
[10] |
Juan Wang, Jing Wang, Yongluo Cao, Yun Zhao. Dimensions of $ C^1- $average conformal hyperbolic sets. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 883-905. doi: 10.3934/dcds.2020065 |
[11] |
Mehdi Pourbarat. On the arithmetic difference of middle Cantor sets. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4259-4278. doi: 10.3934/dcds.2018186 |
[12] |
Dominic Veconi. Equilibrium states of almost Anosov diffeomorphisms. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 767-780. doi: 10.3934/dcds.2020061 |
[13] |
Luis Barreira, Claudia Valls. Existence of stable manifolds for nonuniformly hyperbolic $c^1$ dynamics. Discrete and Continuous Dynamical Systems, 2006, 16 (2) : 307-327. doi: 10.3934/dcds.2006.16.307 |
[14] |
Maria Carvalho. First homoclinic tangencies in the boundary of Anosov diffeomorphisms. Discrete and Continuous Dynamical Systems, 1998, 4 (4) : 765-782. doi: 10.3934/dcds.1998.4.765 |
[15] |
Matthieu Porte. Linear response for Dirac observables of Anosov diffeomorphisms. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 1799-1819. doi: 10.3934/dcds.2019078 |
[16] |
Christian Bonatti, Nancy Guelman. Axiom A diffeomorphisms derived from Anosov flows. Journal of Modern Dynamics, 2010, 4 (1) : 1-63. doi: 10.3934/jmd.2010.4.1 |
[17] |
Petr Kůrka. On the measure attractor of a cellular automaton. Conference Publications, 2005, 2005 (Special) : 524-535. doi: 10.3934/proc.2005.2005.524 |
[18] |
Weiyuan Qiu, Fei Yang, Yongcheng Yin. Quasisymmetric geometry of the Cantor circles as the Julia sets of rational maps. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3375-3416. doi: 10.3934/dcds.2016.36.3375 |
[19] |
Doug Hensley. Continued fractions, Cantor sets, Hausdorff dimension, and transfer operators and their analytic extension. Discrete and Continuous Dynamical Systems, 2012, 32 (7) : 2417-2436. doi: 10.3934/dcds.2012.32.2417 |
[20] |
Silvére Gangloff, Alonso Herrera, Cristobal Rojas, Mathieu Sablik. Computability of topological entropy: From general systems to transformations on Cantor sets and the interval. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4259-4286. doi: 10.3934/dcds.2020180 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]